• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 44
  • 44
  • 17
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Functionalized Layered Double Hydroxides and Gold Nanorods

Dutta, Dipak January 2011 (has links) (PDF)
The reversible and topotactic insertion of guest species within layered host lattices, known as intercalation is a widely studied phenomena. The Layered Double Hydroxides (LDHs) or Anionic Alloys are important class of layered solids with its own distinct ion-exchange host-Guest Chemistry. The LDH structure may be derived from that of Brucite, Mg(OH)2, by random isomorphous substitution of Mg2+ ions by trivalent cations like Al3+, Ga3+ etc. This substitution leaves an excess positive charge on the layers, which is compensated by interlamellar anions. These ions are exchangeable and thus new functionalities can be introduced to ion exchange reactions. Insertion of neutral, non-polar or poorly water-soluble guest molecules remains a challenge. In the present study, two methodologies were adopted to extend the host-guest chemistry of LDHs to neutral and non-polar species, first by using Hydrophobic interaction and second, charge transfer (CT) interaction as driving force. Hlydrophobic interaction as driving force involves functionalization of the Mg-Al-LDH galleries as bilayers, thus covering the essentially hydrophilic interlamellar space of the LDH to one that is hydrophobic and able to solubilize neutral molecules like Anthracene. CT interaction as driving force, involves pre-functionalization of the galleries of the LDH with a donor species e.g. 4-aminobenzoic acid by conventional ion exchange methods to form a LDH-donor intercalated compound. This compound can selectively adsorb acceptor species like Chloranil, Tetracyanoquinodimethane etc. into the interlamellar space of the solid by forming donor-acceptor complexes. The confined donor-acceptor complexes have been characterized by X-Ray Diffraction, UV-Visible, Fourier Transformed Infra-Red and Raman Spectroscopy, Molecular Dynamics Simulations were able to reproduce the experimental results. One dimensional gold nanostructure like nanorods (AuNRs) have received great attention due to their size dependent optical properties, Extending these applications requires assembling the AuNRs into one-, two- and if possible three-dimensional architectures. Several approaches have been developed to assemble AuNRs in two-orientation modes namely end-to-end and side-to-side. The present study self-assembly of the AuNRs has been achieved by anchoring β-cyclodextrin (β-CD) cavities to the nanorods surface. The host-guest chemistry of β-CD has been exploited to assemble the AuNRs. Our strategy was to use a guest molecule that is capable to link β-CD into 1:2 host-guest fashions to link up two β-CD capped nanorods. The guest molecule chosen for the present study was 1,10-phenanthroline. Linkage between the ends of rods leading to V-shaped rods dimmer assembly and side-to-side assembly was achieved by varying the extent of cyclodextrin capping of the AuNRs followed by the addition of linker, 1,10-phenanthroline. The formation of the assembly was characterized using UV-Visible-Near-IR Spectoscopy and Transmission Electron Microscopy.
42

AFM force spectroscopies of surfaces and supported plasmonic nanoparticules / Spectroscopie et microscopie à force atomique sur des surfaces et nanoparticules plasmoniques

Craciun, Andra 15 March 2017 (has links)
Dans ce travail de thèse, le microscope à force atomique (AFM) a été utilisé comme outil de manipulation de haute précision pour construire des nanostructures plasmoniques avec des géométries définies et un réglage précis de la distance interparticulaire et également comme technique de spectroscopie d'absorption. Différentes études concernant les phénomènes pertinents pour la manipulation des nanoparticules et émergeant à l'interface substrat-nanoparticules, ont été réalisées. Des expériences de frottement menées sur diverses surfaces d'oxydes ont révélé un nouveau mécanisme de frottement à l’échelle nanométrique, expliqué par un modèle de potentiel d'interaction de type Lennard-Jones modifié. Les propriétés de frottement et d'adhésion de CTAB adsorbé sur silice sont également présentées. Des nano-bâtonnets d'or fonctionnalisés par du CTAB ont été manipulés par AFM afin de construire des nanostructures plasmoniques. La dernière partie de la thèse présente les efforts expérimentaux et théoriques pour démontrer la faisabilité de l'utilisation d'un AFM comme une technique de spectroscopie optoélectronique à base de force. / In this thesis work the atomic force microscope (AFM) was employed first as a high precision manipulation tool for building plasmonic nanostructures with defined geometries and precise tuning of interparticle distance and second as an absorption spectroscopy technique. Different studies regarding phenomena emerging at sample nanoparticle interface relevant for nanoparticle manipulation were performed. Friction experiments conducted on various oxide surfaces revealed a novel nanoscale stick slip friction mechanism, explained by a modified Lennard-Jones-like interaction potential model. Frictional and adhesion properties of CTAB adsorbed on silica are also reported. CTAB functionalized gold nanorods were used for building specific plasmonic particulate nanostructures. The final part of the thesis presents experimental and theoretical efforts to demonstrate the feasibility of using an AFM as a force-based optoelectronic spectroscopy technique.
43

Nanoparticules semi-conductrices et plasmoniques comme sondes locales de l’environnement diélectrique / Semiconductor and plasmonic nanoparticles as local probes of the dielectric environment

Aubret, Antoine 23 October 2015 (has links)
Sonder la matière en utilisant des nanoparticules luminescentes nécessite une compréhension de chaque processus pouvant modifier leurs propriétés optiques. Cette thèse se focalise sur l'influence de l'environnement diélectrique sur la luminescence de deux types de nanoobjets : (i) des boites quantiques colloïdales (QDs), et (ii) des nanobâtonnets d'or. L'objectif est d'évaluer les potentialités de ces nanostructures comme sondes locales de l'environnement diélectrique.L'évolution de la dynamique de relaxation de QDs dans différents environnements diélectriques est interprétée en terme d'indice de réfraction effectif local. Cette étude montre qu'une analyse détaillée de la sensibilité des QDs à l'environnement permet de les utiliser comme nanosondes biologiques d'indice de réfraction. Nous présentons également une nouvelle méthode pour l'encapsulation de QDs en matrice diélectrique solide, à travers le dépôt par laser pulsé. Les émetteurs peuvent être protégés par des films minces et subir des perturbations non-destructives et réversibles de leur environnement proche, à l'échelle de la particule unique, tout en analysant la dynamique de fluorescence. Finalement, la sensibilité de la résonance plasmon de nanobâtonnets d'or à l'approche d'une interface diélectrique est également sondée, puis comparée a celle des boites quantiques / Probing systems using luminescent nanoparticles requires the understanding of all the processes that influence the luminescence properties. This thesis focuses on the influence of the dielectric environment on the luminescence of two types of nanoparticles : (i) colloidal quantum dots (QDs), and (ii) gold nanorods. The aim of this work is to evaluate the potential of these nanostructures to act as local probes of the dielectric environment. The evolution of the relaxation dynamics of QDs in various dielectric media is interpreted in terms of local effective refractive index. This work shows that a detailed analysis of the sensitivity of the QDs to the environment allows their use as biological nanoprobes of refractive index. We furthermore present a new method for the encapsulation of QDs in a solid dielectric matrix, using pulsed laser deposition. The emitters can be incorporated in thin films and their local environment can be modified in a reversible and non-destructive way, while the emission dynamics is investigated at the single emitter level. Finally, the sensitivity of the surface plasmon resonance of gold nanorods to an approching dielectric interface is also studied, and compared to the one found for QDs
44

Synthesis and characterization of metallic nanoparticles with photoactivated surface chemistries

Abtahi, Seyyed Mohammad Hossein 30 January 2014 (has links)
During recent decades metallic nanoparticles have been found very interesting due to their unique characteristics which make them suitable for different applications. In this research, for the very first time, we tried to perform selective surface photo activation chemistry on the targeted facets of nanoparticles while they are in suspension. This technique enabled us to form desired assemblies of nanoparticles. We focused on elongated shaped gold nanorod due to its unique surface plasmon resonance and probable biomedical applications. In this research we formed a dumbbell shape assembly of nanoparticles in suspension. A probable application for these assemblies can be in vivo imaging. Initially, we reproduced gold nanorods using existing techniques in prior papers and optimized them according to our research needs. A low rpm centrifugal separation technique was developed to efficiently separate synthesized gold nanorods from other shapes. Several characterization techniques were utilized to characterize nanoparticles at each step including UV-absorbance, zeta potential, and dynamic light scattering. Different generations of oligomers were synthesized to be used as gold nanorods coating, and each coating was tested and characterized using appropriate techniques. Our two-step coating replacement method using one of these photocleavable oligomers enabled us to achieve, for the very first time, selective UV photo activation of gold nanorod tips. The photo activated tips were then exposed to oppositely charged gold nanospheres to form dumbbell shape assemblies of gold nanorods and nanospheres. Furthermore, dumbbell shape assembly of nanoparticles was investigated and characterized. / Master of Science

Page generated in 0.0421 seconds