• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase formation and size effects in nanoscale silicide layers for the sub-100 nm microprocessor technology / Phasenbildung und Größeneffekte in nanoskaligen Silizidschichten für die sub-100 nm Mikroprozessortechnologie

Rinderknecht, Jochen 09 August 2005 (has links) (PDF)
Silizide spielen ein wesentliche Rolle in den technologisch fortschrittlichsten CMOS Bauteilen. Sie finden Verwendung als Kontaktmaterial auf den Aktivgebieten und dem Silizium Gatter von Transistoren. Diese Arbeit beschäftigt sich mit den Systemen: Co-Si, Co-Ni-Si und Ni-Si. Sowohl in situ Hochtemperatur-SR-XRD Experimente als auch CBED wurden zur Phasenidentifikation herangezogen. AES erlaubte es, Elementverteilungen in Schichtstapeln zu bestimmen. Für Studien über Agglomerationserscheinungen wurde REM eingesetzt. TEM und analytisches TEM trugen nicht nur zu Einblicken in Schichtstrukturen und Kornformen bei, sondern lieferten auch Daten zu Elementverteilungen in Silizidschichten. Diese Dissertation gliedert sich in zwei Hauptteile. Der erste Teil beschäftigt sich mit den Phasenbildungsabfolgen und den Phasenbildungs- und Umwandlungstemperaturen in nanoskaligen dünnen Schichten. Als Trägermaterial wurden einkristalline und polykristalline Siliziumsubstrate verwendet. Der Einfluß verschiedener Dotierungen im Vergleich zu undotierten Substraten sowie die Beeinflussung der Silizidierung durch eine Deckschicht wurden untersucht. Im zweiten Teil waren Größeneffekte verschiedener Schichtdicken und Agglomerationserscheinungen Gegenstand von Untersuchungen. Unterschiede bei der Silizidierung in Zusammenhang mit unterschiedlichen Schichtdicken wurden bestimmt. Darüberhinaus wurde eine ternäre CoTiSi Phase gefunden und identifiziert. Außerdem konnte die stark eingeschränkte Mischbarkeit der Monosilizide CoSi und NiSi gezeigt werden. Der thermische Ausdehnungskoeffizient von NiSi im Temperaturbereich 400?700°C und sein nicht-lineares Verhalten wurden bestimmt. / Silicides are an essential part of state-of-the-art CMOS devices. They are used as contact material on the active regions as well as on the Si gate of a transistor. In this work, investigations were performed in the systems Co-Si, Co-Ni-Si, and Ni-Si. In situ high temperature SR-XRD and CBED techniques were used for phase identification. AES enabled the determination of elemental concentrations in layer stacks. SEM was applied to agglomeration studies. TEM imaging and analytical TEM provided insights into layer structures, grain morphology as well as information about the distribution of chemical elements within silicide layers. This thesis is divided into two main parts. The first part deals with the phase formation sequences and the phase formation and conversion temperatures in nanoscale thin films on either single crystal or polycrystalline Si substrates. The effect of different types of dopants vs. no doping and the impact of a capping layer on the phase formation and conversion temperatures were studied. In the second part, size effects and agglomeration of thin silicide films were investigated. The effect of different layer thicknesses on the silicidation process was studied. Additionally, the degree of agglomeration of silicide films was calculated. Furthermore, the ternary CoTiSi phase was found and identified as well as the severely limited miscibility of the monosilicides CoSi and NiSi could be shown. The CTE of NiSi between 400?700 ±C and its non-linear behavior was determined.
2

Phase formation and size effects in nanoscale silicide layers for the sub-100 nm microprocessor technology

Rinderknecht, Jochen 13 July 2005 (has links)
Silizide spielen ein wesentliche Rolle in den technologisch fortschrittlichsten CMOS Bauteilen. Sie finden Verwendung als Kontaktmaterial auf den Aktivgebieten und dem Silizium Gatter von Transistoren. Diese Arbeit beschäftigt sich mit den Systemen: Co-Si, Co-Ni-Si und Ni-Si. Sowohl in situ Hochtemperatur-SR-XRD Experimente als auch CBED wurden zur Phasenidentifikation herangezogen. AES erlaubte es, Elementverteilungen in Schichtstapeln zu bestimmen. Für Studien über Agglomerationserscheinungen wurde REM eingesetzt. TEM und analytisches TEM trugen nicht nur zu Einblicken in Schichtstrukturen und Kornformen bei, sondern lieferten auch Daten zu Elementverteilungen in Silizidschichten. Diese Dissertation gliedert sich in zwei Hauptteile. Der erste Teil beschäftigt sich mit den Phasenbildungsabfolgen und den Phasenbildungs- und Umwandlungstemperaturen in nanoskaligen dünnen Schichten. Als Trägermaterial wurden einkristalline und polykristalline Siliziumsubstrate verwendet. Der Einfluß verschiedener Dotierungen im Vergleich zu undotierten Substraten sowie die Beeinflussung der Silizidierung durch eine Deckschicht wurden untersucht. Im zweiten Teil waren Größeneffekte verschiedener Schichtdicken und Agglomerationserscheinungen Gegenstand von Untersuchungen. Unterschiede bei der Silizidierung in Zusammenhang mit unterschiedlichen Schichtdicken wurden bestimmt. Darüberhinaus wurde eine ternäre CoTiSi Phase gefunden und identifiziert. Außerdem konnte die stark eingeschränkte Mischbarkeit der Monosilizide CoSi und NiSi gezeigt werden. Der thermische Ausdehnungskoeffizient von NiSi im Temperaturbereich 400?700°C und sein nicht-lineares Verhalten wurden bestimmt. / Silicides are an essential part of state-of-the-art CMOS devices. They are used as contact material on the active regions as well as on the Si gate of a transistor. In this work, investigations were performed in the systems Co-Si, Co-Ni-Si, and Ni-Si. In situ high temperature SR-XRD and CBED techniques were used for phase identification. AES enabled the determination of elemental concentrations in layer stacks. SEM was applied to agglomeration studies. TEM imaging and analytical TEM provided insights into layer structures, grain morphology as well as information about the distribution of chemical elements within silicide layers. This thesis is divided into two main parts. The first part deals with the phase formation sequences and the phase formation and conversion temperatures in nanoscale thin films on either single crystal or polycrystalline Si substrates. The effect of different types of dopants vs. no doping and the impact of a capping layer on the phase formation and conversion temperatures were studied. In the second part, size effects and agglomeration of thin silicide films were investigated. The effect of different layer thicknesses on the silicidation process was studied. Additionally, the degree of agglomeration of silicide films was calculated. Furthermore, the ternary CoTiSi phase was found and identified as well as the severely limited miscibility of the monosilicides CoSi and NiSi could be shown. The CTE of NiSi between 400?700 ±C and its non-linear behavior was determined.
3

Experimentelle und numerische Untersuchungen zur Analyse der umformtechnischen Herstellung metallischer Bipolarplatten

Bauer, Alexander 14 August 2020 (has links)
Um die wirtschaftliche Relevanz von Polymerelektrolytmembran-Brennstoffzellen (PEM-FC) als alternatives Antriebskonzept zu stärken, befasst sich die vorliegende Arbeit mit der umformtechnischen Fertigung der metallischen Bipolarplatte als eine der benötigten Teilkomponenten. Bipolarplatten werden in hoher Stückzahl innerhalb von Brennstoffzellenstapeln benötigt und sind aufgrund der hohen geometrischen, physikalischen und chemischen Anforderungen einer der wesentlichen Kostentreiber. Zur Senkung der Produktions- und Stückkosten bei der Herstellung von Bipolarplatten liegt der Fokus der Arbeit darin einen Beitrag zur Lösung damit verbundener Herausforderungen zu leisten. Zunächst erfolgte dazu die Entwicklung eines schnellen und flexiblen numerischen Berechnungsmodells zum Tiefziehen eines 0,1 mm dicken aus 1.4404-Edelstahl gefertigten Vorversuchsmusters. Die Basis bildete ein Vergleich mehrerer Modellaufbauten in verschiedenen umformtechnischen FE-Programmen. Durch eine umfassende Materialcharakterisierung und die Verifikation mit experimentellen Versuchen sowie dem Einsatz eines daraufhin entwickelten Sicherheitsfaktors gelang die Auswahl des bestmöglich geeigneten Setups. Mit Hilfe des kalibrierten numerischen Berechnungsmodells konnte die Optimierung der Fertigung des Vorversuchsmusters und nachfolgend die Überführung in die Herstellung eines als mögliche Bipolarplatte funktionsfähigen Forschungsfunktionsmusters umgesetzt werden. Da die Qualität des Bauteils im wesentlichen Maße vom verwendeten Halbzeug abhängt, erfolgte anschließend die Analyse der Auswirkung bei der Verwendung verschiedener Gefügezustände des bereits vorab genutzten 1.4404-Edelstahls. Die durch die Größeneffekte in Wechselwirkung auftretenden Mechanismen bei der Umformung von Halbzeugen der Dicke 0,1 mm wurden mit einem breiten Spektrum von Analyseverfahren wie Röntgendiffraktometrie und Elektronenrückstreubeugung untersucht. Basierend auf den Ergebnissen erfolgte die Auswahl eines für die Fertigung metallischer Bipolarplatten verbesserten Halbzeugzustands, welcher dem aktuell eingesetzten Standard-Ausgangszustand widerspricht. Als finaler Forschungsgegenstand erfolgte der erstmalige Einsatz des Walzformverfahres zur Herstellung relevanter abgeschlossener Bipolarplatten-Kanalstrukturen. Die numerische und experimentelle Umsetzung und die darauf aufbauende Optimierung einer kontinuierlichen Bipolarplattenfertigung zeigt im experimentellen Maßstab ein hohes Potential für eine wirtschaftliche Umsetzung in der Serienfertigung. Die innerhalb der Arbeit erlangten Ergebnisse ermöglichen zusammen einen weiteren Schritt zur Steigerung der Wirtschaftlichkeit bei der Herstellung von Bipolarplatten und somit ferner von PEM-Brennstoffzellen. / To strengthen the economical relevance of polymer electrolyte membrane fuel cells (PEM-FC) as an alternative drive solution, this doctoral thesis deals with the manufacturing of metallic bipolar plates by forming. Bipolar plates are required in a high amount within fuel cell stacks and the enhanced geometrical, physical and chemical demands make them to one of the most costly parts. To decrease the production costs and the costs per unit, the purpose of the thesis is a contribution to finding a solution for the related challenges. At first, the development of a fast and flexible numerical calculation tool for the deep drawing of preliminary test samples made from 316L-foils with a thickness of 0.1 mm was conducted. The fundamentals were set through a comparison between multiple model setups within different finite-element programs which are specialized in forming operations. With the help of a comprehensive material characterization and the verification with experimental tests as well as the development of a safety factor, the most suitable model was chosen. With the calibrated numerical model the process of forming the preliminary test samples was optimized followed by the transfer of the findings to the manufacturing process of an enhanced test sample which includes all of the functionalities as they can be found within operable bipolar plates. As the quality of the manufactured parts essentially depends on the used semi-finished product, an evaluation of effects caused by variating microstructures from the previously used 316L stainless steel was implemented. The specific mechanisms which appear during the forming process of 0.1 mm metal foils and which were caused by size effects were characterized by a wide spectrum of analytical methods like X-ray diffraction and electron backscatter diffraction. Based on the results an optimized initial state of the semi-finished product was determined, which contradicts the state of the art that is currently being used for the forming of metallic bipolar plates. The final object of research was conducted with the first-time application of a roll-forming process to produce geometrical relevant closed bipolar plate channel contours. The numerical and experimental tests followed by an optimization of the continuous bipolar plate rolling show a high potential for an economical realization of a series production. The results gained from this thesis enable a further step towards an increase of economic efficiency in the production of metallic bipolar plates and further PEM fuel cells.

Page generated in 0.0278 seconds