• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre rigidez de gradiente quase Ricci Soliton / About rigidity of gradient almost Ricci Soliton

Gomes, Maria Francisca de Sousa 20 April 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-05-04T20:17:22Z No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-05T13:03:10Z (GMT) No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-05-05T13:03:10Z (GMT). No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-04-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn. / Este trabalho está baseado em [1] e tem por objetivo apresentar um resultado de rigidez para gradiente quase Ricci soliton. Provaremos que um gradiente quase Ricci soliton com curvatura escalar não-negativa, em que ∇ f é um campo conforme não-trivial, é ou o espaço Euclidiano R n ou a Esfera S n . Além disso, temos que no caso Esférico, a função potencial é dada pela primeira auto função do Laplaciano. Por fim, encontraremos condições necessárias e suficientes para que um gradiente quase Ricci soliton compacto localmente conformemente flat seja isométrico a esfera Sn.

Page generated in 0.0682 seconds