• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STREAMING HYPERGRAPH PARTITION FOR MASSIVE GRAPHS

Wang, Guan 10 December 2013 (has links)
No description available.
2

Video Shot Boundary Detection By Graph Theoretic Approaches

Asan, Emrah 01 September 2008 (has links) (PDF)
This thesis aims comparative analysis of the state of the art shot boundary detection algorithms. The major methods that have been used for shot boundary detection such as pixel intensity based, histogram-based, edge-based, and motion vectors based, are implemented and analyzed. A recent method which utilizes &ldquo / graph partition model&rdquo / together with the support vector machine classifier as a shot boundary detection algorithm is also implemented and analyzed. Moreover, a novel graph theoretic concept, &ldquo / dominant sets&rdquo / , is also successfully applied to the shot boundary detection problem as a contribution to the solution domain.
3

Edge partitioning of large graphs / Partitionnement de grands graphes

Li, Yifan 15 December 2017 (has links)
Dans cette thèse nous étudions un problème fondamental, le partitionnement de graphe, dans le contexte de la croissance rapide des données, le volume des données continues à augmenter, allant des réseaux sociaux à l'internet des objets. En particulier, afin de vaincre les propriétés intraitables existant dans de nombreuses graphies, par exemple, la distribution des degrés en loi de puissance, nous appliquons un nouveau mode pour coupe de sommet, à la place de la méthode traditionnelle (coupe de bord), ainsi que pour assurer une charge de travail équilibrée et raisonnablement dans le traitement de graphe distribué. En outre, pour réduire le coût de communication inter-partitions, nous proposons une méthode de partition de bord basée sur les blocs, qui peut explorer efficacement les structures graphiques sous-jacentes au niveau local. , afin d'optimiser l'exécution de l'algorithme de graphe. Par cette méthode, le temps d'exécution et des communications généraux peuvent être considérablement réduits par rapport aux approches existantes. Les challenges qui se posent dans les grands graphiques comprennent également leur grande variété. Comme nous le savons, la plupart des applications graphiques au monde réel produisent des ensembles de données hétérogènes, dans lesquels les sommets et / ou les arêtes peuvent avoir des différents types ou des différentes étiquettes. De nombreuses algorithmes de fouille de graphes sont également proposés avec beaucoup d'intérêt pour les attributs d'étiquette. Pour cette raison, notre travail est étendu aux graphes de multicouches en prenant en compte la proximité des arêtes et la distribution des étiquettes lors du processus de partitionnement. En fin de cette thèse, Nous démontré à la ses performances exceptionnelles sur les ensembles de données du monde réel. / In this thesis, we mainly focus on a fundamental problem, graph partitioning, in the context of unexpectedly fast growth of data sources, ranging from social networks to internet of things. Particularly, to conquer intractable properties existing in many graphs, e.g. power-law degree distribution, we apply the novel fashion vertex-cut, instead of the traditional edge-cut method, for achieving balanced workload in distributed graph processing. Besides, to reduce the inter-partition communication cost, we present a block-based edge partition method who can efficiently explore the locality underlying graphical structures, to enhance the execution of graph algorithm. With this method, the overhead of both communication and runtime can be decreased greatly, compared to existing approaches. The challenges arising in big graphs also include their high-variety. As we know, most of real life graph applications produce heterogenous datasets, in which the vertices and/or edges are allowed to have different types or labels. A big number of graph mining algorithms are also proposed with much concern for the label attributes. For this reason, our work is extended to multi-layer graphs with taking into account the edges closeness and labels distribution during partitioning process. Its outstanding performance over real-world datasets is demonstrated finally.
4

分散式伺服器最佳分割之演算法則 / A Partition Algorithm for the Establishment of Optimal Distributed Servers

陳麗秋, Chen Li-Chiou Unknown Date (has links)
本篇論文以裴氏網(Petri-Net)描述系統,提出一啟發式的演算法則 , 將此裴氏網分割為數個子系統,以便建構為分散式系統中獨立運作的 伺服器。吾人設計一系列的模擬實驗,以測試此演算法的績效。而後,本 篇論文列出影響分割的變數及各變數間的關係,並分析本演算法之特性。 而根據模擬實驗的結果分析,吾人對分散式環境之應用系統發展提出建議 。 / In this thesis, we use the Petri-Net to model a system, and we propose a heuristic algorithm to partition the Petri-Net into several autonomous servers. We then conduct a series of simula- tion experiments to test the performance of the algorithm and to identify the variables which influence the partition of the Petri-Net. Some factors influencing the properties of a partition are identified and their inter-relationships are shown. Based upon the simulation, we provide some suggestions for the develop- ment of the application in the distributed system environment.
5

Segmentation and structuring of video documents for indexing applications

Tapu, Ruxandra Georgina 07 December 2012 (has links) (PDF)
Recent advances in telecommunications, collaborated with the development of image and video processing and acquisition devices has lead to a spectacular growth of the amount of the visual content data stored, transmitted and exchanged over Internet. Within this context, elaborating efficient tools to access, browse and retrieve video content has become a crucial challenge. In Chapter 2 we introduce and validate a novel shot boundary detection algorithm able to identify abrupt and gradual transitions. The technique is based on an enhanced graph partition model, combined with a multi-resolution analysis and a non-linear filtering operation. The global computational complexity is reduced by implementing a two-pass approach strategy. In Chapter 3 the video abstraction problem is considered. In our case, we have developed a keyframe representation system that extracts a variable number of images from each detected shot, depending on the visual content variation. The Chapter 4 deals with the issue of high level semantic segmentation into scenes. Here, a novel scene/DVD chapter detection method is introduced and validated. Spatio-temporal coherent shots are clustered into the same scene based on a set of temporal constraints, adaptive thresholds and neutralized shots. Chapter 5 considers the issue of object detection and segmentation. Here we introduce a novel spatio-temporal visual saliency system based on: region contrast, interest points correspondence, geometric transforms, motion classes' estimation and regions temporal consistency. The proposed technique is extended on 3D videos by representing the stereoscopic perception as a 2D video and its associated depth
6

Clustering in Financial Markets : A Network Theory Approach / Klusteranalys och grafpartitionering i finansiella nätverk

Sörensen, Kristina January 2014 (has links)
In this thesis we consider graph partition of a particular kind of complex networks referred to as power law graphs. In particular, we focus our analysis on the market graph, constructed from time series of price return on the American stock market. Two different methods originating from clustering analysis in social networks and image segmentation are applied to obtain graph partitions and the results are evaluated in terms of the structure and quality of the partition. Along with the market graph, power law graphs from three different theoretical graph models are considered. This study highlights topological features common in many power law graphs as well as their differences and limitations. Our results show that the market graph possess a clear clustered structure only for higher correlation thresholds. By studying the internal structure of the graph clusters we found that they could serve as an alternative to traditional sector classification of the market. Finally, partitions for different time series was considered to study the dynamics and stability in the partition structure. Even though the results from this part were not conclusive we think this could be an interesting topic for future research. / I denna uppsats studeras graf partition av en typ av komplexa nätverk som kallas power law grafer. Specifikt fokuserar vi på marknadengrafen, konstruerad av tidsserier av aktiepriser på den amerikanska aktiemarknaden. Två olika metoder, initialt utvecklade för klusteranalys i sociala nätverk samt för bildanalys appliceras för att få graf-partitioner och resultaten utvärderas utifrån strukturen och kvaliten på partitionen. Utöver marknadsgrafen studeras aven power law grafer från tre olika teoretiska grafmodeller. Denna studie belyser topologiska egenskaper vanligt förekommande i många power law grafer samt modellerns olikheter och begränsningar. Våra resultat visar att marknadsgrafen endast uppvisar en tydlig klustrad struktur för högre korrelation-trösklar. Genom att studera den interna strukturen hos varje kluster fann vi att kluster kan vara ett alternativ till traditionell marknadsindelning med industriella sektorer. Slutligen studerades partitioner för olika tidsserier för att undersöka dynamiken och stabiliteten i partitionsstrukturen. Trots att resultaten från denna del inte var entydiga tror vi att detta kan vara ett intressant spår för framtida studier.
7

Segmentation and structuring of video documents for indexing applications / Segmentation et structuration de documents video pour l'indexation

Tapu, Ruxandra Georgina 07 December 2012 (has links)
Les progrès récents en matière de télécommunications, collaboré avec le développement des dispositifs d'acquisition d’images et de vidéos a conduit à une croissance spectaculaire de la quantité des données vidéo stockées, transmises et échangées sur l’Internet. Dans ce contexte, l'élaboration d'outils efficaces pour accéder aux éléments d’information présents dans le contenu vidéo est devenue un enjeu crucial. Dans le Chapitre 2 nous introduisons un nouvel algorithme pour la détection de changement de plans vidéo. La technique est basée sur la partition des graphes combinée avec une analyse multi-résolution et d'une opération de filtrage non-linéaire. La complexité globale de calcul est réduite par l’application d'une stratégie deux passes. Dans le Chapitre 3 le problème d’abstraction automatique est considéré. Dans notre cas, nous avons adopté un système de représentation image-clés qui extrait un nombre variable d'images de chaque plan vidéo détecté, en fonction de la variation du contenu visuel. Le Chapitre 4 traite la segmentation de haut niveau sémantique. En exploitant l'observation que les plans vidéo appartenant à la même scène ont les mêmes caractéristiques visuelles, nous introduisons un nouvel algorithme de regroupement avec contraintes temporelles, qui utilise le seuillage adaptatif et les plans vidéo neutralisés. Dans le Chapitre 5 nous abordons le thème de détection d’objets vidéo saillants. Dans ce contexte, nous avons introduit une nouvelle approche pour modéliser l'attention spatio-temporelle utilisant : la correspondance entre les points d'intérêt, les transformations géométriques et l’estimation des classes de mouvement / Recent advances in telecommunications, collaborated with the development of image and video processing and acquisition devices has lead to a spectacular growth of the amount of the visual content data stored, transmitted and exchanged over Internet. Within this context, elaborating efficient tools to access, browse and retrieve video content has become a crucial challenge. In Chapter 2 we introduce and validate a novel shot boundary detection algorithm able to identify abrupt and gradual transitions. The technique is based on an enhanced graph partition model, combined with a multi-resolution analysis and a non-linear filtering operation. The global computational complexity is reduced by implementing a two-pass approach strategy. In Chapter 3 the video abstraction problem is considered. In our case, we have developed a keyframe representation system that extracts a variable number of images from each detected shot, depending on the visual content variation. The Chapter 4 deals with the issue of high level semantic segmentation into scenes. Here, a novel scene/DVD chapter detection method is introduced and validated. Spatio-temporal coherent shots are clustered into the same scene based on a set of temporal constraints, adaptive thresholds and neutralized shots. Chapter 5 considers the issue of object detection and segmentation. Here we introduce a novel spatio-temporal visual saliency system based on: region contrast, interest points correspondence, geometric transforms, motion classes’ estimation and regions temporal consistency. The proposed technique is extended on 3D videos by representing the stereoscopic perception as a 2D video and its associated depth

Page generated in 0.1044 seconds