• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 20
  • 9
  • 3
  • Tagged with
  • 130
  • 123
  • 79
  • 61
  • 61
  • 61
  • 44
  • 21
  • 19
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer Chains

Beyer, Doreen, Wang, Shiyong, Pignedoli, Carlo A., Melidonie, Jason, Yuan, Bingkai, Li, Can, Wilhelm, Jan, Ruffieux, Pascal, Berger, Reinhard, Müllen, Klaus, Fasel, Roman, Feng, Xinliang 03 June 2020 (has links)
In this work, we demonstrate the bottom-up on-surface synthesis of poly(para-dibenzo[bc,kl]-coronenylene) (PPDBC), a zigzag edge-encased analog of poly(para-phenylene) (PPP), and its lateral fusion into zigzag edge-extended graphene nanoribbons (zeeGNRs). Toward this end, we designed a dihalogenated di(meta-xylyl)anthracene monomer displaying strategic methyl groups at the substituted phenyl ring and investigated its applicability as precursor in the thermally induced surface-assisted polymerization and cyclodehydrogenation. The structure of the resulting zigzag edge-rich (70%) polymer PPDBC was unambiguously confirmed by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). Remarkably, by further thermal treatment at 450 °C two and three aligned PPDBC chains can be laterally fused into expanded zeeGNRs, with a ribbon width of nine (N = 9) up to 17 (N = 17) carbon atoms. Moreover, the resulting zeeGNRs exhibit a high ratio of zigzag (67%) vs armchair (25%) edge segments and feature electronic band gaps as low as 0.9 eV according to gaps quasiparticle calculations.
52

Studium síly nutné k odtržení hrotu AFM od povrchu grafitové/graphenové vrstvy s ohledem na aplikace v oblasti nanosenzorů / Study of AFM pull-off force on graphite/graphene layers in the perspective of nanosensoric applications

Pagáčová, Lenka January 2012 (has links)
The diploma thesis deals with force-distance spectroscopy method as a tool for determining pull-off force on graphit/graphene sheets under varied conditions. There is described also a contact angle method which is used to idetify contact angles of water on six investigated samples. Results of both method were discussed with respect to utilization of force-distance spectroscopy in wetting measurements of materials. Finally it was carried out modification of graphen sheet by local anodic oxidation.
53

Microscopic tunneling experiments on atomic impurities in graphene and on magnetic thin films

Scheffler, Martha 16 July 2015 (has links)
This thesis presents investigations on hydrogenated graphene by scanning tunneling microscopy and spectroscopy (STM/STS) as well as the implementation of spin-polarized STM. Preparation processes for a magnetic standard sample and spin-sensitive chromium tips are developed. The measurements on graphene reveal specific hydrogen adsorption sites in low coverage and the formation of a pattern at higher coverage. Both is found to be in agreement with previous predictions and calculations. Upon hydrogenation, an impurity midgap state emerges in the density of states which is measured directly for the first time. Complementing angle resolved photoemission experiments confirm that this state is dispersionless over the whole Brillouin zone. A routine is developed to prepare the standard sample system of ultra-thin iron films on tungsten (Fe/W(110)). Investigations on this system confirm the magnetic properties known from literature, including the presence of a spin spiral, and prove that it is well suited for the characterization of spin-polarized tips. Different approaches for the preparation of tips from the antiferromagnetic material chromium are tested. Among these, a promising new method is presented: The coating of crystalline chromium tips with fresh chromium material suggests reproducibility of the tip characteristics. The performance of the produced tips in STM measurements is excellent in regard to a fixed spin-polarization, high resolution and stability. Especially, a recovery of the tip magnetization direction proposed in this thesis makes this new preparation method superior to all processes yielding antiferromagnetic tips reported so far.:1 Introduction 2 Basics 2.1 Scanning tunneling microscopy 2.2 Spin-polarized STM – access to magnetic information 2.3 Measurement setup 3 Probing local hydrogen impurities in quasi-free-standing graphene 3.1 Functionalization of graphene 3.2 In-situ fabrication of quasi-free-standing graphene and its functionalization 3.3 Interpretation of the results 3.4 Short summary 4 Chromium tips for spin-polarized tunneling experiments 4.1 Magnetism at the nanoscale 4.2 Growth and properties of Fe/W(110) 4.3 Preparation of tips with outstanding properties 4.4 Short summary 5 Summary and outlook / Inhalt der vorliegenden Arbeit sind Untersuchungen von hydogeniertem Graphen mittels Rastertunnelmikroskopie und -spektroskopie (RTM/RTS) sowie die Einführung spin-polarisierter RTM. Im Rahmen dessen wurden Präparationsprozesse für magnetische Standardproben und spin-sensitive Chrom-Spitzen entwickelt. Die Messungen an Graphen zeigen spezifische Wasserstoff-Adsorptionsstellen bei geringer Bedeckung und die Ausbildung eines Musters bei höherer Bedeckung, jeweils in Übereinstimmung mit Vorhersagen und Berechnungen. Der durch Hydrogenierung entstehende Störstellenzustand in der Bandlücke der Zustandsdichte wurde zum ersten Mal direkt gemessen. Ergänzende winkelaufgelöste Photoelektronenspektroskopieexperimente bestätigen, dass dieser Zustand in der gesamten Brillouinzone dispersionsfrei ist. Ein Verfahren zur Herstellung magnetischer Standardproben aus ultradünnen Eisenfilmen auf Wolfram (Fe/W(110)) wurde entwickelt. RTM-Untersuchungen an diesem System bestätigen die bereits aus der Literatur bekannten magnetischen Eigenschaften, insbesondere das Vorhandensein einer Spinspirale. Damit ist Fe/W(110) hervorragend geeignet für die Charakterisierung spin-polarisierter Spitzen. Verschiedene Ansätze, die zur Herstellung von Spitzen aus dem antiferromagnetischen Material Chrom verfolgt wurden, werden präsentiert, darunter auch eine vielversprechende neue Methode: Das Aufwachsen eines frischen Chromfilms auf kristalline Spitzen desselben Materials verspricht eine Reproduzierbarkeit von Spitzeneigenschaften. Der Einsatz von so hergestellten Spitzen in RTMMessungen ist geprägt von einer festgelegten Spin-Polarisation, hohem Auflösungsvermögen und Stabilität. Insbesondere die mögliche Reproduzierbarkeit der Magnetisierungsrichtung, die in dieser Arbeit diskutiert wird, macht diese Methode allen bisher berichteten Herstellungprozessen antiferromagnetischer Spitzen überlegen.:1 Introduction 2 Basics 2.1 Scanning tunneling microscopy 2.2 Spin-polarized STM – access to magnetic information 2.3 Measurement setup 3 Probing local hydrogen impurities in quasi-free-standing graphene 3.1 Functionalization of graphene 3.2 In-situ fabrication of quasi-free-standing graphene and its functionalization 3.3 Interpretation of the results 3.4 Short summary 4 Chromium tips for spin-polarized tunneling experiments 4.1 Magnetism at the nanoscale 4.2 Growth and properties of Fe/W(110) 4.3 Preparation of tips with outstanding properties 4.4 Short summary 5 Summary and outlook
54

Thermal deposition approaches for graphene growth over various substrates

Pang, Jinbo 07 March 2017 (has links)
In the course of the PhD thesis large area homogeneous strictly monolayer graphene films were successfully synthesized with chemical vapor deposition over both Cu and Si (with surface oxide) substrates. These synthetic graphene films were characterized with thorough microscopic and spectrometric tools and also in terms of electrical device performance. Graphene growth with a simple chemo thermal route was also explored for understanding the growth mechanisms. The formation of homogeneous graphene film over Cu requires a clean substrate. For this reason, a study has been conducted to determine the extent to which various pre-treatments may be used to clean the substrate. Four type of pre-treatments on Cu substrates are investigated, including wiping with organic solvents, etching with ferric chloride solution, annealing in air for oxidation, and air annealing with post hydrogen reduction. Of all the pretreatments, air oxidation with post hydrogen annealing is found to be most efficient at cleaning surface contaminants and thus allowing for the formation of large area homogeneous strictly monolayer graphene film over Cu substrate. Chemical vapor deposition is the most generally used method for graphene mass production and integration. There is also interest in growing graphene directly from organic molecular adsorbents on a substrate. Few studies exist. These procedures require multiple step reactions, and the graphene quality is limited due to small grain sizes. Therefore, a significantly simple route has been demonstrated. This involves organic solvent molecules adsorbed on a Cu surface, which is then annealed in a hydrogen atmosphere in order to ensure direct formation of graphene on a clean Cu substrate. The influence of temperature, pressure and gas flow rate on the one-step chemo thermal synthesis route has been investigated systematically. The temperature-dependent study provides an insight into the growth kinetics, and supplies thermodynamic information such as the activation energy, Ea, for graphene synthesis from acetone, isopropanol and ethanol. Also, these studies highlight the role of hydrogen radicals for graphene formation. In addition, an improved understanding of the role of hydrogen is also provided in terms of graphene formation from adsorbed organic solvents (e.g., in comparison to conventional thermal chemical vapor deposition). Graphene synthesis with chemical vapor deposition directly over Si wafer with surface oxide (Si/SiOx ) has proven challenging in terms of large area and uniform layer number. The direct growth of graphene over Si/SiO x substrate becomes attractive because it is free of an undesirable transfer procedure, necessity for synthesis over metal substrate, which causes breakage, contamination and time consumption. To obtain homogeneous graphene growth, a local equilibrium chemical environment has been established with a facile confinement CVD approach, inwhich two Si wafers with their oxide faces in contact to form uniform monolayer graphene. A thorough examination of the material reveals it comprises facetted grains despite initially nucleating as round islands. Upon clustering these grains facet to minimize their energy, which leads to faceting in polygonal forms because the system tends to ideally form hexagons (the lowest energy form). This is much like the hexagonal cells in a beehive honeycomb which require the minimum wax. This process also results in a near minimal total grain boundary length per unit area. This fact, along with the high quality of the resultant graphene is reflected in its electrical performance which is highly comparable with graphene formed over other substrates, including Cu. In addition the graphene growth is self-terminating, which enables the wide parameter window for easy control. This chemical vapor deposition approach is easily scalable and will make graphene formation directly on Si wafers competitive against that from metal substrates which suffer from transfer. Moreover, this growth path shall be applicable for direct synthesis of other two dimensional materials and their Van der Waals hetero-structures.:Contents Quotation v Kurzfassung vii Abstract xi Contents xiii Acronyms xvii 1 Aims and objectives 1 2 Introduction 5 2.1 Carbon allotropes 6 2.1.1 Hybridized sp 2 carbon nanomaterials 6 2.1.2 Graphene 7 2.2 Properties of graphene 8 2.2.1 Crystalline structure 8 2.2.2 Electrical transport 10 2.2.3 Optical transparency 11 2.2.4 Other properties 12 2.3 Graphene deposition methods 13 2.3.1 Synthesis approaches 13 2.3.2 Chemical vapor deposition 14 2.3.3 Substrate selection 15 2.3.4 Substrate pretreatments 16 2.3.5 Carbon feedstock 17 2.3.6 Thermal chemical vapor deposition 17 2.3.7 Plasma chemical vapor deposition 18 2.3.8 Transfer protocol 19 2.4 Chemical vapor deposition for graphene growth 21 2.4.1 Thermodynamics 22 2.4.2 Arrhenius plots 22 2.4.3 Activation energy 24 2.4.4 Growth kinetics 25 2.4.5 Reaction mechanisms over Cu 27 2.4.6 Reaction mechanisms over Ni 29 2.4.7 Reaction mechanisms over non-metals 31 2.4.8 Reaction mechanisms of free-standing graphene 35 2.5 Summary 35 2.6 Scope of the thesis 36 3 Experimental setup and characterization techniques 37 3.1 Experimental setup of chemical vapor deposition 37 3.2 Optical microscopy 39 3.3 Scanning electron microscopy 40 3.4 Atomic force microscopy 41 3.5 Transmission electron microscopy 42 3.5.1 Selected area electron diffraction 44 3.5.2 Dark field transmission electron microscopy 46 3.6 Raman spectroscopy 47 3.7 Ultraviolet-Visible spectrophotometry 49 3.8 Electrical transport measurements 49 4 CVD growth of graphene on oxidized Cu substrates 51 4.1 Motivation 52 4.2 Experimental protocol 53 4.3 Influence of Cu pretreatments on graphene formation 54 4.4 Influence of Cu oxidation on graphene growth 60 4.5 Effect of oxidation pretreatment on Cu surface cleaning 64 4.6 Summary 66 5 Chemo-thermal synthesis of graphene from organic adsorbents 67 5.1 Motivation 67 5.2 Experimental protocol 69 5.3 Influence of reaction temperature on graphene growth 75 5.4 Influence of reaction pressure on graphene growth 78 5.5 Influence of reaction flow rate on graphene growth 80 5.6 Summary 81 6 Monolayer graphene synthesis directly over Si/SiO x 83 6.1 Motivation 83 6.2 Experimental protocol 86 6.3 Influence of substrate confinement configuration 87 6.4 Time dependent evolution for graphene formation 91 6.5 Grain boundaries in graphene film 95 6.6 Bubble clustering of faceted graphene grains 98 6.7 Electrical and optical performance of graphene 100 6.8 Summary 102 7 Conclusions 103 8 Outlook 107 A Graphene synthesis over Cu and transfer to Si/SiO x substrate 111 B Chemo-thermal synthesis of graphene over Cu 115 C CVD graphene growth directly over Si/SiO x substrate 127 Bibliography 147 List of Figures 193 List of Tables 197 Acknowledgements 199 List of publications 203 Erklaerung 205 / Im Zuge dieser Doktorarbeit wurden großflächige und homogene Graphen-Monolagen mittels chemischer Gasphasenabscheidung auf Kupfer- (Cu) und Silizium-(Si) Substraten erfolgreich synthetisiert. Solche monolagigen Graphenschichten wurden mithilfe mikroskopischer und spektrometrischer Methoden gründlich charakterisiert. Außerdem wurde der Wachstumsmechanismus von Graphen anhand eines chemo-thermischen Verfahrens untersucht. Die Bildung von homogenen Graphenschichten auf Cu erfordert eine sehr saubere Substratoberfläche, weshalb verschiedene Substratvorbehandlungen und dessen Einfluss auf die Substratoberfläche angestellt wurden. Vier Vorbehandlungsarten von Cu-Substraten wurden untersucht: Abwischen mit organischen Lösungsmitteln, Atzen mit Eisen-(III)-Chloridlösung, Wärmebehandlung an Luft zur Erzeugung von Cu-Oxiden und Wärmebehandlung an Luft mit anschließender Wasserstoffreduktion. Von diesen Vorbehandlungen ist die zuletzt genannte Methode für die anschließende Abscheidung einer großflächigen Graphen-Mono-lage am effektivsten. Die chemische Gasphasenabscheidung ist die am meisten verwendete Methode zur Massenproduktion von Graphen. Es besteht aber auch Interesse an alternativen Methoden, die Graphen direkt aus organischen, auf einem Substrat adsorbierten Molekülen, synthetisieren konnen. Jedoch gibt es derzeit nur wenige Studien zu derartigen alternativen Methoden. Solche Prozessrouten erfordern mehrstufige Reaktionen, welche wiederrum die Qualität der erzeugten Graphenschicht limitieren, da nur kleine Korngrößen erreicht werden konnen. Daher wurde in dieser Arbeit ein deutlich einfacherer Weg entwickelt. Es handelt sich dabei um ein Verfahren, bei dem auf einer Cu-Substratoberfläche adsorbierte, organische Lösungsmittelmoleküle in einer Wasserstoffatmosphäre geglüht werden, um eine direkte Bildung von Graphen auf einem sauberen Cu-Substrat zu gewahrleisten.Der Einfluss von Temperatur, Druck und Gasfluss auf diesen einstufigen chemothermischen Syntheseweg wurde systematisch untersucht. Die temperaturabhängigen Untersuchungen liefern einen Einblick in die Wachstumskinetik und thermodynamische Größen, wie zum Beispiel die Aktivierungsenergie Ea, für die Synthese von Graphen aus Aceton, Isopropanol oder Ethanol. Diese Studien untersuchen außerdem die Rolle von Wasserstoffradikalen auf die Graphensynthese. Weiterhin wurde ein verbessertes Verständnis der Rolle von Wasserstoff auf die Graphen-synthese aus adsorbierten, organischen Lösungsmitteln erlangt (beispielsweise im Vergleich zur konventionellen thermischen Gasphasenabscheidung). Die direkte Graphensynthese mittels chemischer Gasphasenabscheidung auf Si-Substraten mit einer Oxidschicht (Si/SiOx ) ist extrem anspruchsvoll in Bezug auf die großflächige und einheitliche Abscheidung (Lagenanzahl) von Graphen-Monolagen. Das direkte Wachstum von Graphen auf Si/SiOx -Substrat ist interessant, da es frei von unerwünschten Übertragungsverfahren ist und kein Metall-substrat erfordert, welche die erzeugten Graphenschichten brechen lassen können. Um ein homogenes Graphenwachstum zu erzielen wurde durch den Kontakt zweier Si-Wafer, mit ihren Oxidflachen zueinander zeigend, eine lokale Umgebung im chemischen Gleichgewicht erzeugt. Diese Konfiguration der Si-Wafer ist nötig, um eine einheitliche Graphen-Monolage bilden zu können. Eine gründliche Untersuchung des abgeschiedenen Materials zeigt, dass trotz der anfänglichen Keimbildung von runden Inseln facettierte Körner erzeugt werden. Aufgrund der Bestrebung der Graphenkörner ihre (Oberflächen-) Energie zu minimieren, wird eine Facettierung der Körner in polygonaler Form erzeugt, was darin begründet liegt, dass das System idealerweise eine Anordnung von hexagonal geformten Körnern erzeugen würde (niedrigster Energiezustand). Der Prozess ist vergleichbar mit der sechseckigen Zellstruktur einer Bienenstockwabe, welche ein Minimum an Wachs erfordert. Dieser Prozess führt auch zu einer nahezu minimalen Gesamtkorn-grenzlänge pro Flächeneinheit. Diese Tatsache zusammen mit der hohen Qualität der resultierenden Graphenschicht spiegelt sich auch in dessen elektrischer Leistungsfähigkeit wider, die in hohem Maße mit der auf anderen Substraten gebildeten Graphenschichten (inklusive Cu-Substrate) vergleichbar ist. Darüber hinaus ist das Graphenwachstum selbstabschliessend, wodurch ein großes Parameterfenster für eine einfache und kontrollierte Synthese eröffnet wird. Dieser Ansatz zur chemischen Gasphasenabscheidung von Graphen auf Si- Substraten ist leicht skalierbar und gegenüber der Abscheidung auf Metallsubstraten konkurrenzfähig, da keine Substratübertragung notig ist. Darüber hinaus ist dieser Prozess auch für die direkte Synthese anderer zweidimensionalen Materialien und deren Van-der-Waals-Heterostrukturen anwendbar.:Contents Quotation v Kurzfassung vii Abstract xi Contents xiii Acronyms xvii 1 Aims and objectives 1 2 Introduction 5 2.1 Carbon allotropes 6 2.1.1 Hybridized sp 2 carbon nanomaterials 6 2.1.2 Graphene 7 2.2 Properties of graphene 8 2.2.1 Crystalline structure 8 2.2.2 Electrical transport 10 2.2.3 Optical transparency 11 2.2.4 Other properties 12 2.3 Graphene deposition methods 13 2.3.1 Synthesis approaches 13 2.3.2 Chemical vapor deposition 14 2.3.3 Substrate selection 15 2.3.4 Substrate pretreatments 16 2.3.5 Carbon feedstock 17 2.3.6 Thermal chemical vapor deposition 17 2.3.7 Plasma chemical vapor deposition 18 2.3.8 Transfer protocol 19 2.4 Chemical vapor deposition for graphene growth 21 2.4.1 Thermodynamics 22 2.4.2 Arrhenius plots 22 2.4.3 Activation energy 24 2.4.4 Growth kinetics 25 2.4.5 Reaction mechanisms over Cu 27 2.4.6 Reaction mechanisms over Ni 29 2.4.7 Reaction mechanisms over non-metals 31 2.4.8 Reaction mechanisms of free-standing graphene 35 2.5 Summary 35 2.6 Scope of the thesis 36 3 Experimental setup and characterization techniques 37 3.1 Experimental setup of chemical vapor deposition 37 3.2 Optical microscopy 39 3.3 Scanning electron microscopy 40 3.4 Atomic force microscopy 41 3.5 Transmission electron microscopy 42 3.5.1 Selected area electron diffraction 44 3.5.2 Dark field transmission electron microscopy 46 3.6 Raman spectroscopy 47 3.7 Ultraviolet-Visible spectrophotometry 49 3.8 Electrical transport measurements 49 4 CVD growth of graphene on oxidized Cu substrates 51 4.1 Motivation 52 4.2 Experimental protocol 53 4.3 Influence of Cu pretreatments on graphene formation 54 4.4 Influence of Cu oxidation on graphene growth 60 4.5 Effect of oxidation pretreatment on Cu surface cleaning 64 4.6 Summary 66 5 Chemo-thermal synthesis of graphene from organic adsorbents 67 5.1 Motivation 67 5.2 Experimental protocol 69 5.3 Influence of reaction temperature on graphene growth 75 5.4 Influence of reaction pressure on graphene growth 78 5.5 Influence of reaction flow rate on graphene growth 80 5.6 Summary 81 6 Monolayer graphene synthesis directly over Si/SiO x 83 6.1 Motivation 83 6.2 Experimental protocol 86 6.3 Influence of substrate confinement configuration 87 6.4 Time dependent evolution for graphene formation 91 6.5 Grain boundaries in graphene film 95 6.6 Bubble clustering of faceted graphene grains 98 6.7 Electrical and optical performance of graphene 100 6.8 Summary 102 7 Conclusions 103 8 Outlook 107 A Graphene synthesis over Cu and transfer to Si/SiO x substrate 111 B Chemo-thermal synthesis of graphene over Cu 115 C CVD graphene growth directly over Si/SiO x substrate 127 Bibliography 147 List of Figures 193 List of Tables 197 Acknowledgements 199 List of publications 203 Erklaerung 205
55

Maximale Kantengewichte zusammenhängender Graphen

Petzold, Maria 13 June 2012 (has links)
Das Gewicht einer Kante e = xy eines Graphen G = (V, E) ist definiert als Summe der Grade seiner Endpunkte und das Gewicht des Graphen als MInimum über alle Kantengewichte. Wir suchen für positive ganze Zahlen n,m und eine Grapheneigenschaft P den Wert: w(n,m, P) := max{w(G) : |V(G)| = n, |E(G)| = m,G in P}. Der ungarische Mathematiker Erdös formulierte 1990 auf dem Czecheslovak Symposium on Combinatorics, Graphs and Complexity die Problemstellung w(n,m, I) zu bestimmen, für die allgemeinste aller Graphenklassen I. Dieses Problem wurde zuerst teilweise von Invančo and Jendrol’ und dann endgültig von Jendrol’ and Schiermeyer gelöst. Sei G in der Graphenklasse C genau dann wenn G zusammenhängend ist. In dieser Arbeit werden Ansätze zur Bestimmung von w(n,m,C) vorgestellt. Im Speziellen betrachten wir Graphen mit bis zu 3n − 6 Kanten, sowie sehr dichte Graphen. Außerdem diskutieren wir einige verallgemeinerte Fragestellungen.
56

Robust phonon-plasmon coupling in quasi-freestanding graphene on silicon carbide

Koch, R. J., Fryska, S., Ostler, M., Endlich, M., Speck, F., Hänsel, T., Schaefer, J. A., Seyller, Th. 07 May 2018 (has links)
Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modifcation of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tayloring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon flters or plasmonic wave guides. The rigidity of the effect furthermore suggest that it may be of importance for other 2D materials as well.
57

Polarization doping of graphene on silicon carbide

Mammadov, Samir, Ristein, Jürgen, Koch, Roland J., Ostler, Markus, Raidel, Christian, Wanke, Martina, Vasiliauskas, Remigijus, Yakimova, Rositza, Seyller, Thomas 07 May 2018 (has links)
The doping of quasi-freestanding graphene (QFG) on H-terminated, Si-face 6H-, 4H-, and 3C-SiC is studied by angle-resolved photoelectron spectroscopy (ARPES) close to the Dirac point. Using semi-insulating as well as n-type doped substrates we shed light on the contributions to the charge carrier density in QFG caused by i) the spontaneous polarization of the substrate, and ii) the band alignment between the substrate and the graphene layer. In this way we provide quantitative support for the previously suggested model of polarization doping of graphene on SiC [Phys. Rev. Lett. 108, 246104 (2012)].
58

Development of thermoelectric materials based on polymer nanocomposites

Gnanaseelan, Minoj 09 August 2019 (has links)
Composites based on ICP with conductive (SWCNT and Te) and insulating fillers (TiO2 and CuO and insulating polymers with conducting fillers (rGO, modified rGO, and SWCNT) were prepared and their thermoelectric properties were investigated. Attempts to enhance the thermoelectric properties of PEOT:PSS composites did not bring about a significant change. But, the attempts to modify rGO brought about a considerable improvement in the thermoelectric properties. At the end, the use of SWCNT provided the maximum ZT in case of insulating polymer composites. Eventually, SEBS/4 wt% SWCNT with a ZT of 0.0017 and SBS/0.5 wt% SWCNT with a ZT 6  10-6 stood out as the best p-type and n-type thermoelectric material, respectively, in this work. This success paved the way to build 2 modules of thermoelectric generators which generated a maximum potential of 93.2 mV at a temperature difference of 40 K.
59

Graphene-based chemiresistive nanosensor: from gas detection to electronic olfaction

Huang, Shirong 20 April 2022 (has links)
The present thesis work represents a novel and reliable strategy to develop highly sensitive, highly selective, and low-cost graphene-based gas sensors towards inorganic gases detection (NH3, PH3) and volatile organic compounds (VOCs) sensing at room temperature. The developed strategy may allow for gas detection, odor recognition of a wide spectrum of odor molecules, as well as detection of volatile organic compounds (VOC) in an extensive variety of domains, e.g., environmental monitoring, public security, smart farming, or disease diagnosis (e.g., lung cancer, COVID-19).
60

Self-aligned graphene on silicon substrates as ultimate metal replacement for nanodevices

Iacopi, Francesca, Mishra, N., Cunning, B.V., Kermany, A.R., Goding, D., Pradeepkumar, A., Dimitrijev, S., Boeckl, J.J., Brock, R., Dauskardt, R.H. 22 July 2016 (has links)
We have pioneered a novel approach to the synthesis of high-quality and highly uniform few-layer graphene on silicon wafers, based on solid source growth from epitaxial 3C-SiC films [1,2]. The achievement of transfer-free bilayer graphene directly on silicon wafers, with high adhesion, at temperatures compatible with conventional semiconductor processing, and showing record- low sheet resistances, makes this approach an ideal route for metal replacement method for nanodevices with ultimate scalability fabricated at the wafer –level.

Page generated in 0.0437 seconds