• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 828
  • 204
  • 133
  • 102
  • 42
  • 12
  • 12
  • 8
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 1727
  • 296
  • 288
  • 279
  • 227
  • 209
  • 202
  • 186
  • 174
  • 145
  • 140
  • 127
  • 120
  • 114
  • 112
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
801

Nano- and micro-particle doped liquid crystal phases

Al-Zangana, Shakhawan January 2017 (has links)
This thesis presents the investigation of the liquid crystal (LC) - particle suspensions. Particles from nano- to micro-size, spherical to two-dimensional shapes, with different functionality are dispersed into nematic and smectic phases. The aim is to create ordered nanoparticle (NP) assemblies and thereby modify the common properties of the liquid crystal, such as dielectric anisotropy and electro-optical, revealing any interaction between particles and LC properties. It is found that for concentrations (>0.5vol%), the ferroelectric NPs have increased the sensitivity of the nematic liquid crystal to the electric field through electro-optical responses, which is seen by an enhancement in the dielectric anisotropy. This could be induced by the coupling of the electrical dipole moments in the spherical NPs with the LC director field. The electro-optical properties of the chiral smectic (SmC*) phase (tilt angle Θ, switching time τ_s and spontaneous polarisation P_s) are found to be independent of the concentration and sizes of the doped NPs. The relaxation frequency f_R of the Goldstone mode is faster in the ferroelectric NPs suspensions of 2.0vol% compared to the paraelectric NPs. In the graphene oxide (GO) - nematic LC (5CB) suspensions, the small GO sizes of mean size 560 nm are more easily dispersible than larger flakes of 2.8 micro metre mean size. As the GO concentration is increased, each of the threshold voltage and splay elastic constant dramatically increases, reaching saturation at ≈1.0wt%. The field driven switching-on time is practically not affected, while the purely elastically driven switching-off time is strongly sped-up. Interestingly, thermotropic and lyotropic LC phases are exhibited in the GO-5CB suspensions when heating the thermotropic liquid crystal into its isotropic phase. The isotropic phase of 5CB acts as a solvent for the GO particles, forming a lyotropic nematic phase with largely reduced birefringence. It is found that the nematic to isotropic phase transition is shifted toward higher temperature for the GO-5CB system compared to the BaTiO3-5CB system. Dispersions of different sizes of GO flakes are prepared in isotropic and nematic fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature range (25-60 ℃) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes were found to exhibit varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. The relaxation frequencies in the isotropic media were lower compared to the nematic medium. Relaxation frequencies (~10 kHz) are observed in the GO-isotropic media, which are reduced as the size of the GO flakes are decreased, are anticipated to be inherited from GO flakes. However, the fast relaxations (~100 kHz) that are observed in the nematic suspensions could imply strongly slowed down molecular relaxation modes of the nematogenic molecules. Finally, the phase diagram of lyotropic LC as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity was investigated. Polarising optical microscopy was used to determine isotropic-biphasic-nematic phase evolution. The confinement volume and geometry of the sample relative to the GO size are shown to be vital to the observation of the lyotropic phase. GO LCs have the potential for a range of applications from display technologies to conductive fibres. The confinement related LC phase transition is critical toward their applications. It is also found that the stability of the LC phase is higher for the solvent of higher dielectric constant.
802

Quantum Monte Carlo study of frustrated systems. / 阻錯系統的量子門特卡洛研究 / CUHK electronic theses & dissertations collection / Quantum Monte Carlo study of frustrated systems. / Zu cuo xi tong de liang zi Mente Kaluo yan jiu

January 2010 (has links)
In the chapter 3, we study ferromagnetic fluctuations on two types of bilayer triangular lattices by the single-band Hubbard model. We start from the tight-binding model to obtain energy spectrum, the density of sates, and the spin susceptibility. With finite Coulomb interaction turned on, we apply the random phase approximation and use the determinant quantum Monte Carlo method to study spin susceptibility for the two bilayer triangular lattices and make comparisons of their magnetic properties. The effects of the interlayer coupling is also examined in detail. / In the chapter 4, we addresses the issue of the ferromagnetism in graphene-based samples. To study magnetic correlations in graphene, we systematically carry out quantum Monte Carlo simulations of the Hubbard model on a honeycomb lattice. In the filling region below the Van Hove singularity, the system shows a short-range ferromagnetic correlation, which is slightly strengthened by the on-site Coulomb interaction and markedly by the next-nearest-neighbor hopping integral. The ferromagnetic properties depend on the electron filling strongly, which may be manipulated by the electric gate. Due to its resultant high controllability of ferromagnetism, graphene-based samples may facilitate the new development of many applications. / In the chapter 5, we examined theoretically the magnetism of impurity adatoms in graphene by quantum Monte Carlo simulation technique based on Hirsch-Fye algorithm. When tuning the Fermi energy of graphene by gate voltage with available experiments, the values of occupancy and local moment for impurity can be changed. Furthermore, with medium and large hybridizations between impurity and graphene atoms, the local moment can be switched on and off by Kondo effects. We also use maximum entropy method to study the spectral density from Green's function for impurity, and we find very unconventional behaviors which are absolutely different from the cases in the normal metal. These signatures of spectral density enlarge the possibility for controlling the impurity magnetism by gate voltage. / In this research thesis, we mainly study three strongly correlated systems: Hubbard model in bilayer triangular lattice which corresponds to the real material of NaxCoO2 · yH 2O, strong-interaction electrons in graphene system and Anderson impurity in graphene. Our numerical method is determinant quantum Monte Carlo method which will be introduced in the chapter 2. / Hu, Feiming = 阻錯系統的量子門特卡洛研究 / 胡飛鳴. / Adviser: Lin Hai-Qing. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 107-126). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Hu, Feiming = Zu cuo xi tong de liang zi Mente Kaluo yan jiu / Hu Feiming.
803

Formation and optical properties of mixed multi-layered heterostructures based on all two-dimensional materials

Sheng, Yuewen January 2017 (has links)
The production of large area, high quality two-dimensional (2D) materials using chemical vapour deposition (CVD) has been an important and difficult topic in contemporary materials science research, after the discovery of the diverse and extraordinary properties exhibited by these materials. This thesis mainly focuses on the CVD synthesis of two 2D materials; bilayer graphene and monolayer tungsten disulphide (WS2). Various factors influencing the growth of each material were studied in order to understand how they affect the quality, uniformity, and size of the 2D films produced. Following this, these materials were combined to fabricate 2D vertical heterostructures, which were then spectroscopically examined and characterised. By conducting ambient pressure CVD growth with a flat support, it was found that high uniform bilayer graphene could be grown on the centimetre scale. The flat support provides for the consistent delivery of precursor to the copper catalyst for graphene growth. These results provide important insights not only into the upscaling of CVD methods for growing large area, high quality graphene and but also in how to transfer the product onto flexible substrates for potential applications as a transparent conducting electrode. Monolayer WS2 is of interest for use in optoelectronic devices due to its direct bandgap and high photoluminescence (PL) intensity. This thesis shows how the controlled addition of hydrogen into the CVD growth of WS2 can lead to separately distributed domains or centimetre scale continuous monolayer films at ambient pressure without the need for seed molecules, specially prepared substrates or low pressure vacuum systems. This CVD reaction is simple and efficient, ideal for mass-production of large area monolayer WS2. Subsequent studies showed that hexagonal domains of monolayer WS2 can have discrete segmentation in their PL emission intensity, forming symmetric patterns with alternating bright and dark regions. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. These results provide important insights into the spatially varying properties of these CVD-grown TMDs materials, which may be important for their effective implementation in fast photo sensors and optical switches. Finally, by introducing a novel non-aqueous transfer method, it was possible to create vertical stacks of mixed 2D layers containing a strained monolayer of WS2, boron nitride, and graphene. Stronger interactions between WS2 on graphene was found when swapping water for IPA, likely resulting from reduced contamination between the layers associated with aqueous impurities. This transfer method is suitable for layer by layer control of 2D material vertical stacks and is shown to be possible for all CVD grown samples, a result which opens up pathways for the rapid large scale fabrication of vertical heterostructure systems with large area coverage and controllable thickness on the atomic level.
804

Scalable processing and integration of 2D materials and devices

Torres Alonso, Elías January 2018 (has links)
Due to its truly two dimensional (2D) character and its particular lattice, single layer graphene (SLG) possesses exceptional properties: it is semimetallic, transparent, strong yet flexible ... Complementary features such as the insulating character of hexagonal boron nitride (h-BN) and semiconducting properties of transition metal dichalcogenides (TMDs) enable the whole spectrum of electronic devices to be built with combinations of these 2D materials. Due to this and the ease of exfoliation with a sticky tape, a vast amount of research was sparked. The mechanical exfoliation method, however, is only suitable for novel or proof-of-concept devices. The trend nowadays in electronics is towards transparent, lightweight, flexible, embedded smart devices and sensors in everyday objects such as windows and mirrors, garments, windshields, car seats, parachutes...These demands are already met inherently by these new materials, thus the challenges remaining are within their synthesis, deposition and processing, where more scalable ways of production and device fabrication need to be developed. This thesis explores innovative approaches using established techniques that aim to bridge the gap between proof-of-concept devices and real applications of 2D materials in future commercial level technologies. Methods to create graphene and engineer its properties are employed with a special focus on scalability and adaptability towards the industry. These graphene materials have been processed using pioneering schemes to create different optoelectronic devices and sensors. The techniques employed here for synthesis, transfer and deposition, device processing and characterization of graphene and derivatives, are suitable for their use in large manufacturing and mass-production. Depending on the application envisaged, different materials are used and optimize in order to balance good performance, cost-effectiveness and suitability/scalability of the process for the specific target the device was designed for.
805

Cálculos de estrutura eletrônica de materiais mediante combinação linear de orbitais atômicos /

Ribeiro, Allan Victor. January 2010 (has links)
Orientador: Alexys Bruno Alfonso / Banca: Andrea Brito Latge / Banca: Jeverson Teodoro Arantes Junior / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: São calculadas as estruturas eletrônicas de arranjos atômicos periódicos unidimensionais, bidimensionais e tridimensionais, através do método de combinação linear de orbitais atômicos (método tight binding). Esses orbitais correspondem aos átomos isolados das espécies químicas que compõem o arranjo atômico sob investigação. Combinações lineares deles, com coeficientes apropriados, aproximam a forma das funções de onda eletrônicas do arranjo atômico. Nos casos em que a sobreposição dos orbitais é desprezada, a contribuição de cada orbital atômico para função de Bloch é mostrada nas representações gráficas das estruturas de bandas calculadas. Após uma brve apresentação do método tight binding, são calculadas as estruturas de bandas de cadeias lineares de átomos de Carbono que têm um ou dois átomos por célula unitária. Essas cadeias são chamadas de cumuleno e poliino, respectivamente. Dentre os arranjos atômicos bidimensionais de interesse, é calculada a estrutura de bandas do grafeno. Essas energias são comparadas com resultados disponíveis na literatura. Para este material é realizada uma breve discussão sobre as bandas 'pi' provenientes de orbitais 'p IND. z' e sobre como a sobreposição dos orbitais atômicos afeta a forma das bandas. O método também é aplicado na modelagem de cristais tridimensionais. São calculadas as estruturas de bandas doo diamante, Germânio (com estrutura de diamente), Arseneto de Gálio (com estrutura zincblend) e Nitreto de Gálio (com estrutura de wurtzita). Os resultados obtidos são comparados com aqueles reportados por outros autores que usaram métodos ab initio / Abstract: The eletronic structures of periodic arrangements of atoms in one, two and three dimensions are calculated by a linear combinations of atomic orbitals (tight binding method). Those orbitals correspond to the isolated atoms of the chemical species composing the atomic arrangement under investigation. Suitable linear combinations of such states approximate the shape of the eletronic wave functions of the atomic arrangement. When the overlapping of the atomic orbitals is disregarded, the contribution of each orbital to the Bloch state is displayed in the graphs of the band structures. After a brief description of the tight binding method, the band structures of linear chains of Carbon atoms are calculated. The cases of one and two atoms per unit cell are considered. They correspond to cumulene and polyyne, respectively. Among the two-dimensional atomic arrangements of interest, we focus the calculation of the band structure of graphene. The calculated bands are compared with available results. Some attention is devoted to the 'pi' bands associated to the 'p IND. z' orbitals is presented. The effects of the overlapping of the atomic orbitals are discussed. The method is also applied to model three-dimensional crystels. The band structures of diamong, germanium (with diamond structure), Gallium Arsenide (with zincblende structure) and Gallium Nitride (with wurtzite structure) are obtained. The results are compared with those reported by other authors who applied ab initio methods / Mestre
806

Simulating DNA sequencing in graphene nanopores : a QM/MM study to include dynamical and environmental effects

Filatova, Ekaterina A. January 2014 (has links)
Orientador: Alexandre Reily Rocha / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2014.
807

Acoustoelectric transport in graphene

Bandhu, Lokeshwar January 2015 (has links)
The acoustoelectric effect in graphene is studied in a graphene/lithium niobate hybrid system, which was prepared by transferring large area single-layer graphene grown on copper onto lithium niobate SAW devices. The transfer of momentum from the surface acoustic waves (SAWs), generated on the surface of the lithium niobate, to the carriers in graphene results in an attenuation and velocity shift of the wave, and gives rise to an acoustoelectric current. The acoustoelectric current, and the amplitude and velocity of the SAW are measured using a sourcemeter and oscilloscope, respectively. Macroscopic acoustoelectric current flowing over several hundred micrometers is demonstrated in graphene, which is measured to be directly proportional to the SAW intensity and frequency at room temperature. A relatively simple classical relaxation model, which describes the piezoelectric interaction between SAWs and the carriers in a two-dimensional electron system, is used to explain the experimental observations. The investigation of the acoustoelectric current as a function of temperature demonstrates the ability of SAWs of different wavelengths to probe graphene at different length scales. By tuning the conductivity of the graphene through the use of a top gate, voltage-controlled phase (velocity) shifters are demonstrated. The acoustoelectric current measured as a function of gate voltage demonstrates that an equal density of electrons and holes are transported at the charge neutrality point, reflecting the unique properties of graphene.
808

A route to strain-engineering electron transport in graphene

Downs, Christopher Stephen Charles January 2015 (has links)
Graphene, a single atomic layer of graphite, has many exciting electronic and mechanical properties. On a fundamental level, the quasi-relativistic behaviour of the charge carriers in graphene arises from the honeycomb-like atomic structure. Deforming the lattice changes the lengths of the carbon-carbon bonds, breaking the hopping symmetry between carbon sites. Mathematically, elastic strain in a graphene membrane can be described by additional terms in the low-energy effective Hamiltonian, analogous to the vector potential of an external magnetic field. Hence, certain non-uniform strain geometries produce so-called `pseudo-magnetic fields', leading to a predicted zero-field quantum Hall effect. These fictitious magnetic fields are distinct from an external magnetic field in that they are only observed by charge carriers within the membrane, and have opposing polarity for electrons in the K and K' valleys, preserving time-reversal symmetry of the lattice as a whole. Deforming graphene in the non-uniform manner required to produce a homogeneous pseudo-magnetic field has proven to be a huge technological challenge, however, restricting experimental evidence to scanning tunnelling spectroscopy measurements on, for example, highly deformed nanobubbles formed by the thermal expansion of an epitaxially grown sheet on a platinum substrate. These results stimulated a large amount of interest in strain-engineering electron transport in graphene, partly due to the extreme magnitude of the observed pseudo-magnetic field, a direct consequence of the strain components strongly varying over the space of a few nanometres, but the formation of nanobubbles is a highly stochastic process which cannot be reliably reproduced. Subsequent research found a way to fabricate nanobubbles with a high degree of consistency, but the measurements were still limited to local-probe techniques due to the nanoscale size of the devices. As such, a method to reliably induce a homogeneous pseudo-magnetic field within a micron-sized membrane would be an attractive proposition, and is the basis for the work presented within this thesis. The non-uniform strain required precludes a simple bending or elongation of the substrate, hence a more local method is required. A novel nanostructure consisting of suspended gold beams surrounding a graphene membrane will deform upon cooling to cryogenic temperatures, and crucially, the actuation mechanism can be designed to produce any configuration of strain, including uniaxial strain, triaxial strain and a fan-shaped deformation, the latter two of which are predicted to create homogeneous pseudo-magnetic fields within a membrane. Strain patterns which are predicted to produce experimentally significant pseudo-magnetic fields (~1 T) may be generated with complex actuation beams that are physically achievable. Furthermore, the actuation mechanisms may be utilised as electrical contacts to the membrane, allowing its conductivity to be measured in the context of a two- or multi-terminal measurement, in conjunction with an external magnetic field. The design of the devices was developed using finite-element analysis, and the behaviour verified by low-temperature imaging of prototypes. While, after careful annealing, some conventional two-terminal suspended devices exhibited quantum Hall features at very low fields, the fabricated strain-inducing devices did not display pseudo-Landau quantisation, nor Landau quantisation, due to the difficulties of using current annealing to clean devices post-fabrication. The presented work, however, could pave the way towards observing signatures of pseudo-magnetic fields in a range of experimental measurements, as well as creating alternative strain geometries.
809

Emprego de materiais baseados em grafeno como sorventes em técnicas modernas de preparo de amostra / Employment of graphene based sorbents in modern sample preparation techniques

Bruno Henrique Fumes 06 April 2018 (has links)
Técnicas modernas de preparo de amostra têm sido utilizadas na determinação de diferentes classes de compostos em diversos tipos de matrizes. Essas técnicas podem ser divididas em dois grandes grupos, as baseadas em solvente e as baseadas sorvente, foco do trabalho. Dentre os materiais sorventes mais estudados atualmente, os derivados de grafeno têm se destacado devido a suas propriedades físico-químicas favoráveis para realizar sorção com uma grande variedade de compostos de interesse. Por isso, no presente trabalho são apresentadas possibilidades de utilização de materiais baseados em grafeno nas seguintes técnicas de preparo de amostras: microextração por sorvente empacotado (MEPS), extração \"\"on-line\"\" e extração sortiva em barra de agitação (SBSE). Para a técnica MEPS, foi realizado a síntese de óxido de grafeno e grafeno suportados por ligação covalente em aminopripil sílica. Esses materiais foram empregados como sorventes para determinação de parabenos em amostras de água. O método desenvolvido apresentou limites de quantificação (LOQ) que variaram de <a name=\"_Hlk498351551\">0,2 a 0,3 &mu;g/L, coeficientes de variação (CV) &lt; 19,2% e exatidão de 82,3 a 119,2%. Os materiais utilizados na técnica MEPS também foram utilizados para empacotar colunas de extração \"on-line\" e realizar uma comparação entre as fases sintetizadas. O método de extração \"on-line\" apresentou LOQ de 0,5 &mu;g/L, exatidão de 88,2 à 107,2 e CV &lt; 16%. A comparação entre as colunas de extração empacotadas com o grafeno e seu óxido suportados na aminopropil sílica mostrou que o grafeno suportado na sílica apresenta maior retenção para os parabenos mais apolares. Com relação ao desenvolvimento de barras de SBSE revestidas com grafeno, o método desenvolvido empregando as barras de SBSE apresentou valores de LOQ que variaram de 2 à 8 &mu;g/L, exatidão de 81,9 à 126,3% e CV &lt; 30%. Além disso, avaliou-se o uso do grafeno e óxido de grafeno ligado a sílica com grupamentos amino variando algumas condições de síntese e testando esses materiais para analitos das classes das triazinas, sulfonamidas e anti-inflamatórios não esteroidais. Também são apresentados testes iniciais realizados para um novo modo de extração proposto, similar a técnica SBSE, avaliando a extração de parabenos e anti-inflamatórios não esteroidais. / Modern sample preparation techniques have been applied to the determination of different compounds class in several matrices. These techniques might be divided into two groups, solvent and sorbent based, the last being the goal of this work. Nowadays, among the most studied materials the graphene based ones has been highlighted due to its physical chemical properties favorable to sorption process of a variety of interested compounds. The present work shows possibilities to employ graphene based materials in the follow sample preparation techniques: microextraction by packed sorbent (MEPS), \"on-line\" extraction, and stir bar sorptive extraction (SBSE). For MEPS, the materials graphene oxide and graphene supported on aminopropyl silica through covalent bounds were synthesized. These materials were employed as sorbent to determine parabens in water samples. The developed method showed limits of quantification (LOQ) ranging from 0,2 a 0,3 &mu;g/L, coefficients of variation (CV) &lt; 19,2% and accuracy ranging from 82,3 à 119,2%. The synthetized materials used in MEPS were also used and compared to an \"on-line\" method employing an extraction column packed with them. The \"on-line\" method showed LOQ of 0,5 &mu;g/L, accuracy ranging from 88,2 to 107,2 and CV &lt; 16%. The comparison between packed column with graphene and graphene oxide supported on aminopropyl silica showed that graphene had a higher retention for parabens with high Log Kow. The method developed with SBSE bars coated with graphene showed LOQ ranging from 2 to 8 &mu;g/L, accuracy ranging from 81,9 to 126,3% and CV &lt; 30%. Moreover, the employment of graphene oxide and graphene synthetized by changing some synthesis conditions and testing these materials to extract triazines, sulfonamides, and non-steroidal anti-inflammatory drugs was also evaluated. In addition, are presented the preliminary tests regarding to a new extraction mode, similar to SBSE. These tests were done for parabens and non-steroidal anti-inflammatory drugs.
810

Estudo da reação de redução de Oxigênio em soluções alcalinas sobre Platina dispersa sobre diferentes materiais carbonáceos / Study of the reduction reaction of Oxygen in alkaline solutions on platinum dispersed on different carbonaceous materials

Melo, Paulo César Miranda de 29 July 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-02T19:56:39Z No. of bitstreams: 1 PauloMelo.pdf: 1885214 bytes, checksum: 6465bf341f7075901189f6e8c3bc6680 (MD5) / Made available in DSpace on 2017-06-02T19:56:39Z (GMT). No. of bitstreams: 1 PauloMelo.pdf: 1885214 bytes, checksum: 6465bf341f7075901189f6e8c3bc6680 (MD5) Previous issue date: 2016-07-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) / The oxygen reduction reaction (ORR) is a fundamental reactionin the performance of próton exchange membrane fuel cells (PEMFC). In these systems, platinum (Pt) nanoparticles dispersed on Vulcan XC-72 carbon still remains the most widely used system to promote the RRO in aqueous solutions. In the last decades, new carbonaceous materials, as fullerene, single wall carbon nanotubes (SWCNT) and multiwall carbono nanotubes (MWCNT), graphene oxide (GO) and reduced graphene oxide (rGO), were developed and researched as new support materials for electron mediators in different areas, as electrochemistry, sensor, surface science and heterogeneous catalysis. In this work, Pt nanoparticles have been dispersed on Vulcan XC-72, MWCNT, GO e rGO by the alcohol reduction method using ethylene glycol as solvent and reduction agent. Physical characterization of these materials were conducted with energy dispersive Xray spectroscopy (EDS or EDX), X-ray diffraction spectroscopy (DRX), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical properties of these materials were investigated, in 1,0 mol L-1 KOH solutions, with the cyclic voltammetry, rotating disk electrode and techniques, and showed that these carbonaceous materials promote the ORR through a peroxide mechanism (2-electrons) and the electrocatalytic activity decreases in the order rGO >> CNT > Vulcan > GO. After modifications with Pt nanoparticles, the ORR proceeds via a direct mechanism (4-electrons) and the electrocatalytic activity decreases in the order Pt/CNT > Pt/Vulcan XC-72 > Pt/GO > Pt/rGO. / A reação de redução de oxigênio (RRO) é uma reação fundamental no desempenho das células à combustível de membrana de troca de prótons (PEMFC). Nestes sistemas, nanopartícula de platina (Pt) dispersa sobre carbono Vulcan XC-72 ainda continua sendo o sistema mais utilizado para promover a RRO em soluções aquosas. Nas últimas décadas, novos materiais carbonáceos, como fulereno, nanotubos de carbono de paredes simples (SWCNT) e de paredes múltiplas (MWCNT), óxido de grafeno (GO) e óxido de grafeno reduzido (rGO), foram desenvolvidos e vêm sendo pesquisados como suporte de mediadores eletrônicos nas áreas de eletroquímica, sensores, ciência de superfície e catálise heterogênea. Neste trabalho, nanopartículas de Pt foram dispersas sobre Vulcan XC-72, MWCNT, GO e rGO pelo processo de redução de álcool utilizando etileno glicol como solvente e agente redutor. Caracterizações físicas destes materiais foram realizadas com as técnicas de espectroscopia de energia dispersiva de raios-X (EDX), espectroscopia de difração de raios-X (DRX), microscopia eletrônica de transmissão (TEM) e espectroscopia Raman. As propriedades eletroquímicas destes materiais foram estudadas, em soluções aquosas KOH 1,0 mol L-1, com as técnicas de voltametria cíclica e eletrodo de disco rotatório, e os resultados mostraram que os materiais carbonáceos promovem a RRO por meio do mecanismo peróxido (2 elétrons) e atividade eletrocatalítica decresce na ordem rGO >> CNT > Vulcan > GO. Após modificações com nanopartículas de Pt, a RRO processa-se de acordo com o mecanismo direto (4 elétrons) e a atividade electrocatalítica indica uma diminuição na seguinte ordem de Pt/CNT > Pt/Vulcan > Pt/GO > Pt/RGO.

Page generated in 0.0437 seconds