• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • Tagged with
  • 29
  • 29
  • 13
  • 13
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The disturbance of fluvial gravel substrates by signal crayfish (Pacifastacus leniusculus) and the implications for coarse sediment transport in gravel-bed rivers

Johnson, Matthew January 2011 (has links)
Signal crayfish are an internationally widespread invasive species that can have important detrimental ecological impacts. This thesis aims to determine whether signal crayfish have the potential to also impact the physical environment in rivers. A series of experiments were undertaken in purpose-built still-water aquaria using a laser scanner to obtain Digital Elevation Models (DEMs) of narrowly-graded gravel surfaces before and after exposure to crayfish. The difference between DEMs was used to quantify volumetric changes in surface topography due to crayfish activity. Two distinct types of topographic change were identified. The first was the construction of pits and mounds which resulted in an increase in surface roughness and grain exposure. The second was the rearrangement of surface material caused by crayfish brushing past grains when walking and foraging, reorientating grains and altering friction angles. A series of 80 flume runs were undertaken to quantify alterations made by crayfish to water-worked, as well as loose, gravel substrates at low velocity flows. Crayfish significantly altered the structure of water-worked substrates, reversing the imbrication of surface grains to a more random arrangement. Surfaces were entrained at a relatively high velocity flow subsequent to crayfish activity in order to directly link topographic and structural alterations to substrate stability. Nearly twice as many grains were mobilised from surfaces which had been disturbed by crayfish in comparison to control surfaces that were not exposed to crayfish. A field investigation aimed to determine the potential significance of the geomorphic impact of crayfish in rivers. Signal crayfish were tracked through a 20 m reach of a small, lowland alluvial river for 150 days using a Passive Integrated Transponder (PIT) system. Crayfish were active throughout the channel, although their activity became limited as water temperature dropped and flow stage increased. Substrate was not an important determinant of crayfish activity at this scale. Instead, crayfish tended to be found along the inner bank of a meander bend where there was a substantial cover of macrophytes. Consequently, signal crayfish were active for extended periods on substrates of a similar size to those that they could disturb in flume experiments. These results suggest that signal crayfish could have important geomorphic effects in rivers, disturbing bed structures and increasing the mobility of coarse material. This may have important implications for both the management of some rivers and benthic organisms that reside on the river bed.
12

Numerical modelling of braiding processes in gravel-bed rivers

Baral, Bishnu Raj January 2018 (has links)
Gravel bed braided rivers are distinctive natural environments that provide a wide range of key environmental, economic and recreational services. There is, however, a growing concern that over the twentieth century, an increasing number of braided rivers have metamorphosed into wandering or single thread channels, representing a loss of key habitats, geodiversity and amenity. While in some situations, shifts in channel pattern may be unambiguously linked to abrupt changes in flow or sediment supply, the lack of a theoretical basis underpinning the development and maintenance of braiding makes identification of the cause and effect of channel metamorphosis hazardous. A growing body of research has suggested that the transition between channel patterns may depend on the poorly understood interaction between the flow regime, sediment supply and vegetation colonisation. Such interactions are governed by critical thresholds, due to changes in flow resistance and bank strength associated with the distribution, form and intensity of vegetation colonisation. Subtle changes in flow or sediment supply that promote vegetation growth or indeed remove it through inundation or attrition. This can lead to complex non-linear shifts in the balance of forces that govern sediment transport and bedform morphodynamics, ultimately resulting in one-way changes in channel morphology. There is, therefore, a critical need to develop a quantitative understanding of these feedbacks in order to design sustainable river management programmes that seek to optimize the ecological and socio-economic benefits these rivers offer. During the last three decades, significant advances in the understanding of the morphodynamics of braided rivers have been made through a combination of field and physical experimentation. More recently, the emerging field of numerical modelling has created a new avenue to investigate the processes that govern channel dynamics. While this methodology offers significant promise through the construction of virtual experiments that examine the spectrum of drivers and responses of river systems, such models require careful and critical evaluation before they can be used to guide management practice. The wider goal of this research is to explore the application of a numerical modelling to investigate the feedbacks associated with the development and maintenance of braiding. Specifically, the state-of-the-art numerical model, BASEMENT, was used to examine channel responses to steady, and unsteady flow regimes, with and without the representation of vegetation. The research focuses on four main contributions: 1. The development of a systematic framework to quantify the evolving form and processes of braided rivers that can be used as part of a comprehensive approach to model validation. 2. Simulation of braiding development and maintenance using BASEMENT under steady flow conditions. Model simulations based on the natural prototype of the braided River Feshie were used to examine the sensitivity of emergent channel morphologies to the model parameterisation, focusing in particular on the representation of bank erosion and gravity-driven sediment transport. A novel multi6metric framework for model validation is presented and the results demonstrate the critical importance of lateral bank migration processes in order to maintain braided morphologies under steady flow. 3. A critical evaluation of the simulation of braiding under different form of steady and unsteady flow regimes is presented. These experiments investigate how the morphodynamics of braiding vary under energetically-normalised flow regimes characterized by differences in hydrograph form (peak discharge and duration). This experiment provides a novel insight into the role of flow variation in the maintenance of braiding. 4. Finally, the feedback between flow regimes, sediment transport and vegetation growth are examined using a novel model of vegetation colonisation and die- back. Four scenarios are presented, a no-vegetation model, one based on low growth rate, one based on an intermediate growth rate, and finally a high growth rate parameterisation. These simulations provide a clear insight into the non-linear processes driving channel evolution and demonstrate how subtle changes in the balance between flow frequency and vegetation growth can lead to divergent channel patterns. In summary, this thesis aims to advance our understanding of the morphodynamics of braided rivers and the role numerical models may have in helping to interrogate their behaviour and governing controls. It is hoped that this work may contribute, albeit in a small way, to advancing the science that promotes the sustainability of these fascinating and valuable environments.
13

The Effect of Coarse Gravel on Cohesive Sediment Entrapment in an Annular Flume

Glasbergen, Kenneth January 2014 (has links)
The amount and type of cohesive sediment found in gravel river beds can have important implications for the health of aquatic biota, surface/groundwater interactions and water quality. Due to landscape disturbances in the Elbow River watershed, increased sediment fluxes have negatively impacted fish habitat, water quality and water supply to the City of Calgary. However, little is known about the source of cohesive sediment and its interaction with gravel deposits in the Elbow River. This research was designed to: 1) quantify the transport properties (critical shear stress for erosion, deposition, porosity, settling velocity, density) of cohesive sediment and 2) evaluate the potential for coarse gravel to entrap cohesive sediment in the Elbow River. A 5m annular flume was used to conduct erosion and deposition experiments using plane and coarse bed conditions. The critical shear stress for deposition and erosion of the Elbow River cohesive sediments was 0.115Pa and 0.212Pa, respectively. The settling velocity of the cohesive sediment had an inverse relationship between floc size and settling velocity for larger flocs, due to a decrease in floc density with increased size. Cohesive sediment moved from the water column into the gravel bed via the coupling of surface and pore water flow. Once in the gravel bed, cohesive sediments were not mobilized from the bed because the shear produced by the flume was less than the critical shear to mobilize the gravel bed. Using a model developed by Krishnappan and Engel (2006), an entrapment coefficient of 0.2 was determined for the gravel bed. Entrapment coefficients were plotted against substrate size, porosity and hydraulic conductivity, demonstrating a relationship between entrapment coefficient and these variables. It was estimated that 864kg of cohesive sediment is stored in the upper 0.08m of a partially submerged point bar in the Elbow River. Accordingly, when flow conditions are sufficient to mobilize the gravel bed and disturb the amour layer, cohesive materials may be entrained and transported into the Glenmore Reservoir, where it will reduce reservoir capacity and may pose treatment challenges to the drinking water supply.
14

Linking Form and Process in Braided Rivers Using Physical and Numerical Models

Kasprak, Alan 01 May 2015 (has links)
Braided channels arise due to high sediment availability in conjunction with regular competent flows and readily erodible banks. Together, these boundary conditions lead to the deposition and reworking of a network of transient bars that characterize the braided planform. However, quantifying the geomorphic response of braided systems to alterations in these boundary conditions is not straightforward, as channels adjust over a wide range of timescales, rendering traditional field-based observation intractable. As such, the development of simple yet robust relationships between channel morphology and sediment transport has the potential to allow predictions of channel response to altered hydrologic or sediment regimes. In this research, I first use laboratory flume experiments to relate particle travel distance during floods (termed particle path length) and the spacing of channel bars in braided rivers (Chapter 2), finding that deposition sites for sediment in transport can be readily predicted by the characteristic confluence-diffluence spacing in a reach. I then use the relationship between path length and channel morphology to build a simple, open-source morphodynamic model for braided rivers that computes sediment transport using path-length distributions derived from bar spacing (Chapter 3). I explore the validity of this model, specifically noting that its modular framework allows exploration of process representations in morphodynamic modeling in ways existing models do not. Finally, I employ the model to determine the role of sediment supply in braided channel bar morphodynamics (Chapter 4). Specifically, I address the relative roles of sediment sourced from upstream versus sediment sourced from within a braided reach in terms of channel morphodynamics at decadal timescales. This research demonstrates that simple scaling relationships, while necessarily imperfect, nevertheless provide insight into morphodynamic processes in braided rivers, while also allowing predictions of channel response to sediment or hydrologic forcing at the timescales of channel adjustment.
15

The pattern of surface waves in a shallow free surface flow

Horoshenkov, Kirill V., Nichols, Andrew, Tait, Simon J., Maximov, G.A. January 2013 (has links)
Yes / This work presents new water surface elevation data including evidence of the spatial correlation of water surface waves generated in shallow water flows over a gravel bed without appreciable bed forms. Careful laboratory experiments have shown that these water surface waves are not well-known gravity or capillary waves but are caused by a different physical phenomenon. In the flow conditions studied, the shear present in shallow flows generates flow structures, which rise and impact on the water-air interface. It is shown that the spatial correlation function observed for these water surface waves can be approximated by the following analytical expression W(rho) = e(-rho 2/2 sigma w2)COS(2 pi L-0(-1)rho). The proposed approximation depends on the spatial correlation radius, sigma(w), characteristic spatial period, L-0, and spatial lag, . This approximation holds for all the hydraulic conditions examined in this study. It is shown that L-0 relates to the depth-averaged flow velocity and carries information on the shape of the vertical velocity profile and bed roughness. It is also shown that sigma(w) is related to the hydraulic roughness and the flow Reynolds number.
16

A comparative study between sand- and gravel-bed open channel flows in the wake region of a bed-mounted horizontal cylinder

Devi, K., Hanmaiahgari, P.R., Balachandar, R., Pu, Jaan H. 23 March 2022 (has links)
Yes / In nature, environmental and geophysical flows frequently encounter submerged cylindrical bodies on a rough bed. The flows around the cylindrical bodies on the rough bed are very complicated as the flow field in these cases will be a function of bed roughness apart from the diameter of the cylinder and the flow velocity. In addition, the sand-bed roughness has different effects on the flow compared to the gravel-bed roughness due to differences in the roughness heights. Therefore, the main objective of this article is to compare the mean velocities and turbulent flow properties in the wake region of a horizontal bed-mounted cylinder over the sand-bed with that over the gravel-bed. Three experimental runs, two for the sand-bed and one for the gravel-bed with similar physical and hydraulic conditions, were recorded to fulfil this purpose. The Acoustic Doppler Velocimetry (ADV) probe was used for measuring the three-dimensional (3D) instantaneous velocity data. This comparative study shows that the magnitude of mean streamwise flow velocity, streamwise Reynolds normal stress, and Reynolds shear stress are reduced on the gravel-bed compared to the sand-bed. Conversely, the vertical velocities and vertical Reynolds normal stress are higher on the gravel-bed than the sand-bed. / The Author Ram Balachandar acknowledges the grant support from Natural Sciences and Engineering Research Council of Canada the author Jaan H. Pu acknowledges the grant support from the Hidden Histories of Environmental Science Project (at Seedgrant Stage) by the Natural Environment Research Council (NERC) and Arts and Humanities Research Council (AHRC), part of UK Research and Innovation (UKRI).
17

Sampling spatial sediment variation in gravel-bed streams

Crowder, David W. 07 October 2005 (has links)
A gravel-bed stream's grain size distribution plays an important role in determining a river's depth, sediment transport rates, and stream bed stability as well as the survival rates of mussels and salmonids. Unfortunately, the material found in gravel-bed rivers exhibits vertical stratification as well as spatial variation in the horizontal direction and is difficult to sample. Previous research has largely dealt with the ability of grid, areal, and bulk sampling techniques to sample a single spot within a river. Little has been done in characterizing an entire river reach. Of the methods suggested, none is adequate because they are either inherently biased or are incapable of describing the spatial variations within a sampled region. The present research proposes a method that overcomes these problems. It shows that a single large grid sample, or composite grid sample, can be used to obtain an unbiased estimate of an area's overall grain size distribution at a known accuracy level. It then suggests that the arithmetic mean is a suitable parameter to characterize the coarseness of individual sediment deposits within a sampled area. Thus, by recording the size and location of each stone taken in the composite grid sample one can use statistical hypothesis testing to systematically analyze local means throughout the sampled area and locate sediment boundaries. Once the boundaries are located, stones from the composite grid sample falling within the boundaries of a particular deposit can be analyzed as separate grid samples representative of the individual deposits present and describe the local variability. / Master of Science
18

The Accuracy of River Bed Sediment Samples

Petrie, John Eric 19 January 1999 (has links)
One of the most important factors that influences a stream's hydraulic and ecological health is the streambed's sediment size distribution. This distribution affects streambed stability, sediment transport rates, and flood levels by defining the roughness of the stream channel. Adverse effects on water quality and wildlife can be expected when excessive fine sediments enter a stream. Many chemicals and toxic materials are transported through streams by binding to fine sediments. Increases in fine sediments also seriously impact the survival of fish species present in the stream. Fine sediments fill tiny spaces between larger particles thereby denying fish embryos the necessary fresh water to survive. Reforestation, constructed wetlands, and slope stabilization are a few management practices typically utilized to reduce the amount of sediment entering a stream. To effectively gauge the success of these techniques, the sediment size distribution of the stream must be monitored. Gravel bed streams are typically stratified vertically, in terms of particle size, in three layers, with each layer having its own distinct grain size distribution. The top two layers of the stream bed, the pavement and subpavement, are the most significant in determining the characteristics of the stream. These top two layers are only as thick as the largest particle size contained within each layer. This vertical stratification by particle size makes it difficult to characterize the grain size distribution of the surface layer. The traditional bulk or volume sampling procedure removes a specified volume of material from the stream bed. However, if the bed exhibits vertical stratification, the volume sample will mix different populations, resulting in inaccurate sample results. To obtain accurate results for the pavement size distribution, a surface oriented sampling technique must be employed. The most common types of surface oriented sampling are grid and areal sampling. Due to limitations in the sampling techniques, grid samples typically truncate the sample at the finer grain sizes, while areal samples typically truncate the sample at the coarser grain sizes. When combined with an analysis technique, either frequency-by-number or frequency-by-weight, the sample results can be represented in terms of a cumulative grain size distribution. However, the results of different sampling and analysis procedures can lead to biased results, which are not equivalent to traditional volume sampling results. Different conversions, dependent on both the sampling and analysis technique, are employed to remove the bias from surface sample results. The topic of the present study is to determine the accuracy of sediment samples obtained by the different sampling techniques. Knowing the accuracy of a sample is imperative if the sample results are to be meaningful. Different methods are discussed for placing confidence intervals on grid sample results based on statistical distributions. The binomial distribution and its approximation with the normal distribution have been suggested for these confidence intervals in previous studies. In this study, the use of the multinomial distribution for these confidence intervals is also explored. The multinomial distribution seems to best represent the grid sampling process. Based on analyses of the different distributions, recommendations are made. Additionally, figures are given to estimate the grid sample size necessary to achieve a required accuracy for each distribution. This type of sample size determination figure is extremely useful when preparing for grid sampling in the field. Accuracy and sample size determination for areal and volume samples present difficulties not encountered with grid sampling. The variability in number of particles contained in the sample coupled with the wide range of particle sizes present make direct statistical analysis impossible. Limited studies have been reported on the necessary volume to sample for gravel deposits. The majority of these studies make recommendations based on empirical results that may not be applicable to different size distributions. Even fewer studies have been published that address the issue of areal sample size. However, using grid sample results as a basis, a technique is presented to estimate the necessary sizes for areal and volume samples. These areal and volume sample sizes are designed to match the accuracy of the original grid sample for a specified grain size percentile of interest. Obtaining grid and areal results with the same accuracy can be useful when considering hybrid samples. A hybrid sample represents a combination of grid and areal sample results that give a final grain size distribution curve that is not truncated. Laboratory experiments were performed on synthetic stream beds to test these theories. The synthetic stream beds were created using both glass beads and natural sediments. Reducing sampling errors and obtaining accurate samples in the field are also briefly discussed. Additionally, recommendations are also made for using the most efficient sampling technique to achieve the required accuracy. / Master of Science
19

Analysis of small-scale gravel bed topography during armouring.

Marion, A., Tait, Simon J., McEwan, I.K. January 2003 (has links)
No / In evaluating the resistance of sediment particles to entrainment by the action of the flow in a river, the grain geometry is usually characterized using representative sizes. This approach has been dictated, initially by lack of physical insight, but more recently by the lack of analytical tools able to describe the 3-D nature of surface grain organization on water-worked sediment beds. Laboratory experiments are presented where mixed grain size beds were mobilized under a range of hydraulic and sediment input conditions. Detailed bed topography was measured at various stages. Statistical tools have been adopted which describe the degree of surface organization on water-worked sediment bed surfaces. The degree of particle organization and the bed stability can be evaluated in relative terms using the properties of the probability density distribution of the bed surface elevations and in absolute terms using a properly defined 2-D structure function. The methods described can be applied directly to natural water-worked surfaces given the availability of appropriate bed surface elevation data sets.
20

Action des crues sur la dynamique sédimentaire et végétale dans un lit de rivière à galets : l'Isère en Combe de Savoie / Impact of floods on sediment and vegetation dynamics in a gravel bed river : Isère River, Savoie, France

Jourdain, Camille 14 March 2017 (has links)
Au cours du XXe siècle, les lits de nombreuses rivières ont été sujets à l'installation de végétation alluviale. Dans le cas des rivières aménagées, cette tendance est souvent associée à des altérations géomorphologiques directes (extractions de granulats, endiguements, etc.) ainsi qu'à des modifications anthropiques de leur régime hydrologique et sédimentaire conduisant à une stabilisation du lit qui permet l'installation de la végétation. Cette végétation augmente le risque d'inondation en diminuant les vitesses d'écoulement et en augmentant les niveaux d'eau en crue. Par ailleurs la biodiversité est dégradée par la diminution des habitats pionniers caractéristiques de ces environnements. Manipuler artificiellement le régime hydrologique d'une manière qui pourrait limiter l'installation de végétation sur les bancs est une option considérée par les gestionnaires. Dans ce contexte, ce projet de thèse a pour objectif de comprendre les impacts des crues d'amplitude variable sur la destruction de végétation, et d'identifier les mécanismes associés. Le site d'étude sur lequel cette thèse se focalise est l'Isère en Combe de Savoie, une rivière à galets très aménagée des Alpes françaises.Dans le cadre de cette étude, la destruction de végétation a été étudiée à l'échelle du tronçon à partir d'une analyse des données hydrologiques, des photos aériennes, et des données topographiques disponibles pour la période 1996-2015. À l'échelle du banc, un suivi de terrain avant et après les événements hydrologiques marquants entre avril 2014 et septembre 2015 nous a permis d'étudier l'action des crues sur la mobilité sédimentaire et sur la végétation. Ces observations ont été complétées par une modélisation numérique bidimensionnelle de l'écoulement en crue.À l'échelle du tronçon (20 km), nous avons trouvé une corrélation très forte entre les volumes d'eau ayant transité dans le chenal sur une période donnée, et la destruction de végétation associée au cours de la période 1996-2015. Les débits associés à des temps de retour infra-annuels semblent permettre la destruction de végétation. Le mécanisme de destruction le plus efficace que l'on observe à cette échelle est l'érosion latérale ; les mécanismes prenant place à la surface des bancs sont très minoritaires. Cependant, les surfaces détruites sont modestes ; 3,4 % de la surface végétalisée est détruite annuellement en moyenne. À l'échelle du banc, la période de suivi de terrain a couvert une série de crues fréquentes (temps de retour < 1 an) et une crue de temps de retour 10 ans. Seule cette crue a partiellement détruit la végétation pionnière sur les bancs suivis. La destruction de végétation ligneuse jeune a eu lieu par le biais de quatre mécanismes : 1) déracinement par érosion de surface supérieure à 20 cm, 2) enfouissement sous une couche de sédiment grossiers supérieure à 30 cm, 3) déracinement par une combinaison d'érosion et de dépôt, et 4) érosion latérale en marge des bancs. La destruction de végétation est toujours associée à une mobilité sédimentaire importante.Ces résultats montrent qu'une crue très importante est nécessaire pour détruire la végétation par la mobilisation de la surface des bancs sur ce site. Par contraste, les débits forts mais non exceptionnels (temps de retour infra-annuel) sont en mesure de détruire la végétation par érosion latérale. Dans le cas de l'Isère en Combe de Savoie, il semble que l'utilisation de crues artificielles ne peut pas seule permettre de maintenir la largeur inter-digues libre de végétation. Pour la suite, on propose de s'intéresser à la destruction de végétation dans le contexte de la dynamique des bancs alternés plus ou moins végétalisés, en prenant en compte les apports et le transport des sédiments en plus de l'hydrologie. / Many rivers worldwide have seen vegetation establish within their beds throughout the 20th century. In the case of managed rivers, this trend is usually linked to direct geomorphological alterations (sediment mining, diking, etc.) as well as anthropic alterations of flow regime and sediment supply. These pressures have stabilized river beds, allowing vegetation to establish permanently. This vegetation increases the risk of flooding by decreasing flow velocities and increasing water levels. In addition, the associated reduction in availability of pioneer habitats characteristic of these stabilized environments typically degrades biodiversity. Managing hydrology in a way that would limit vegetation establishment on bars presents an interesting management option. In this context, our study was aimed at understanding the impacts of floods of varying magnitude on vegetation removal, as well as identifying and quantifying the underlying mechanisms. This work focused on the Isère River, a heavily managed gravel bed river located in the western French Alps.Vegetation removal was studied at the reach scale using hydrological data, aerial photographs, and topographic data available between 1996 and 2015. At the bar scale, field monitoring before and after floods from april 2014 to september 2015 allowed us to document the impact of floods on sediment mobility and vegetation. A 2D numerical model was used to document fine scale hydraulics.At the reach scale, we found a strong correlation between water volume flowing through the river channel and the amount of vegetation removal. Discharges with return intervals of less than one year seem to have an impact on vegetation removal. The main mechanism observed from aerial photographs was lateral erosion; surface processes were negligible in comparison. However, global vegetation removal was modest: since 1996, on average 3,4 % of vegetated area was removed annually. At the bar scale, our study period permitted monitoring of a series of high frequency floods (return interval < 1 year) and a 10-year food event. Only the largest flood partially removed pioneer vegetation from bars. Young vegetation removal occurred through four different mechanisms: 1) uprooting by surface scour > 20 cm, 2) burial under a thick layer of coarse sediments > 30 cm, 3) uprooting by a combination of surface scour and sediment deposition resulting in no net topographic change, and 4) lateral erosion of bars. Vegetation removal was always associated with significant sediment mobility.We conclude that on the Isere River a very important flood is required to remove vegetation by mobilizing bar surfaces. In contrast, high but not exceptional flows (return interval < 1 an) are capable of removing vegetation through lateral erosion. However, artificial floods alone are unlikely to maintain the full width of the channelized bed of the Isere River free of vegetation. In the future, vegetation removal needs to be studied in the context of alternate bar dynamics with or without vegetation. It seems necessary to consider sediment transport as well as hydrology to understand the overall dynamics of the bed.

Page generated in 0.0291 seconds