Spelling suggestions: "subject:"gravure électrochimique"" "subject:"gravures électrochimique""
11 |
Optimisation d’un procédé d’usinage par microélectroérosion / Optimization of micro electrical discharge machiningDahmani, Rabah 06 May 2015 (has links)
L’objet de cette thèse est d’étudier un procédé de fraisage par microélectroérosion (μEE), qui est un procédé sans contact permettant d’usiner tous les matériaux durs conducteurs d’électricité à l’aide d’un micro-outil cylindrique ultrafin. Le principe consiste à créer des micro-décharges électriques entre le micro-outil et une pièce conductrice immergés dans un diélectrique liquide. En faisant parcourir à l’outil un parcours 3D, il est possible de creuser une forme complexe dans la pièce avec des détails à fort rapport d’aspect. Dans ce travail, nous avons tout d’abord amélioré un procédé d’élaboration de microoutils cylindriques ultrafins par gravure électrochimique de barreaux de tungstène. Des outils de diamètre 32,6 ± 0,3 μm sur une longueur de 3 mm ont été obtenus de manière automatique et reproductible. L’écart type a été divisé par 2 par rapport à l’état de l’art antérieur. Des outils de diamètre inférieur ont été obtenus avec une intervention de l’opérateur, et ce jusqu’à 3 μm de diamètre. Puis ces micro-outils ont été mis en oeuvre pour usiner des pièces avec le procédé de fraisage par microélectroérosion. Pour ce faire, une machine de 2ème génération a été entièrement développée sur la base de travaux antérieurs. Il a été possible d’usiner de l’acier inoxydable dans de l’eau déionisée avec des micro-outils de 3 μm de diamètre sans détérioration de l’outil. Par ailleurs, Le procédé de μEE a été caractérisé en termes de résolution d’usinage, taux d’enlèvement de matière et usure de l’outil. Un générateur de décharges original a permis d’usiner avec des micro-décharges de 1 à 10 nJ / étincelle avec une diminution très sensible de l’usure de l’outil par rapport à l’état de l’art. Un procédé original de caractérisation en ligne des décharges et de cartographie dans l’espace a aussi été développé / This work aims at studying Micro Electrical Discharge Milling (μEDM milling), which is a non-contact process allowing machining all hard and electrically conductive materials with a cylindrical ultrathin tool. The principle is based on the creation of electrical micro discharges between the tool and an electrically conductive part immersed in a liquid dielectric. By means of a 3D path, the tool machines a complex shape in the part with high aspect ratio details. In this work, we have firstly improved a process for making cylindrical ultrathin micro-tools by electrochemical etching of tungsten rods. Tools with a diameter of 32.6 ± 0.3 μm and a length of 3 mm have been obtained with an automated and reproducible process. Standard deviation has been divided by 2 by comparison with the previous state of the art. Tools with diameter as low as 3 μm have been fabricated with the help of the machine operator Then these micro-tools have been used for machining parts with the μEDM milling process. To do so, a second generation machine has been entirely developed on the basis of previous work. It has been possible to machine stainless steel in deionized water with 3 μm micro-tools without damaging the tools. In other respects, the μEDM milling process has been characterized in terms of machining resolution, material removal rate and tool wear. An innovative generator of discharges allow machining with 1 to 10 nJ / spark with a reduced tool wear by comparison to the state of the art. An innovative process for the on line characterization of discharges with spatial distribution capability has been developed
|
12 |
Développement d’un procédé d’usinage par micro-électroérosion / Development of a machining processby EDMGirardin, Guillaume 20 December 2012 (has links)
L’électroérosion (EE) est une technique d’usinage sans contact de matériaux conducteursd’électricité ; elle particulièrement bien adaptée à l’usinage de matériaux durs. Le principe consiste àcréer des décharges électriques érodantes entre un outil et une pièce à usiner, toutes deuximmergées dans un diélectrique. Dans cette thèse, nous avons étudié la miniaturisation de ceprocédé, la microélectroérosion (μEE), qui se présente comme un procédé complémentaire destechniques de micro-usinage mécanique, laser, ou encore des techniques issues de lamicrotechnologie du silicium (RIE, DRIE, LIGA). Toutefois, la résolution de la μEE est limitée.Dans ce travail, nous avons tout d’abord développé un procédé original d’élaboration de microoutilscylindriques en tungstène par gravure électrochimique. Celui-ci permet d’obtenir de manièrereproductible des micro-outils de diamètre 15 μm et de rapport hauteur sur diamètre supérieur à 50.Des micro-outils plus fins ont aussi été obtenus (jusqu’à 700 nm) mais avec des problèmes dereproductibilité. Par ailleurs, un prototype de machine de fraisage par μEE a été développé avec uneélectronique entièrement caractérisée. Des micro-canaux de 40 μm de largeur ont été obtenus dansl’acier d’inoxydable et 25 μm dans le titane ; une rugosité Ra de 86 nm a été atteinte dans des cavitésde 600 x 600 x 30 μm. Les limitations du dispositif expérimental ont aussi été mises en évidence.Dans la dernière partie de ce travail, nous avons procédé à l’étude des microdécharges et du microplasmas’établissant entre micro-outil et pièce à l’aide de caractérisations électriques. La résistanceet l’inductance des décharges ont été déterminées expérimentalement puis intégrées dans unmodèle permettant de prévoir la durée des impulsions de courant et leur intensité. Des pistes pourl’amélioration de la résolution d’usinage sont proposées en conclusion de ce travail. / Electro Discharge Machining (EDM) is a non-contact technique allowing machining of electricallyconductive materials; it is well adapted for the machining of hard materials. The principle is based onthe creation of eroding electrical discharges between a tool and a piece, both immersed in adielectric. In this thesis, we have the studied miniaturization of the process, called micro electrodischarge machining (μ-EDM), which is considered as a complementary technique of mechanical orlaser micro-machining techniques and silicon micro technology processes (RIE, DRIE, LIGA)..However, the resolution of μEDM is limited.In this work, we have firstly developed an original method for making tungsten micro-tools withcylindrical profile by electrochemical etching. This method allows the reproducible fabrication ofmicro-tool with 15-μm diameter. Thinner micro-tools were also obtained (down to 700 nm) withreproducibility problems. Furthermore, a prototype machine for milling μ-EDM was developed with afully characterized electronics. Micro channels were obtained respectively in stainless steel with awidth of 40μm and in titanium with a width of 25μm; a surface roughness Ra of 86 nm was achievedin 600 x 600 x 30 μm cavities. Besides, the limitations of the apparatus were highlighted. In the lastpart of this work, we have studied the micro-discharge and the micro-plasma between the micro-tooland the part with electrical characterization. The resistivity and the inductance of the sparks weremeasured and integrated in a numerical model in order to explain the duration of the microdischarges and their intensity. Solutions for improving the machining resolution are also discussed atthe end of this work.
|
Page generated in 0.0532 seconds