• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 48
  • 48
  • 16
  • 15
  • 14
  • 12
  • 12
  • 10
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Estrutura populacional e história demográfica da tartaruga-verde (Chelonia mydas) no Atlântico Oeste / Population structure and demographic history of green turtle (Chelonia mydas) in the West Atlantic

Juliana Costa Jordão 03 October 2013 (has links)
As tartarugas marinhas são répteis de vida longa que realizam extensas migrações entre áreas de alimentação e desova, resultando em estágios sucessivos de mistura e isolamento de estoques genéticos, espacial e temporalmente. A tartaruga-verde (Chelonia mydas) está ameaçada de extinção, e é fundamental entender sua dinâmica populacional e distribuição para o manejo e conservação da espécie. O objetivo deste estudo foi analisar a diversidade genética, estrutura populacional, origens dos indivíduos e história demográfica de C. mydas em três locais do Oceano Atlântico (estado do Rio de Janeiro, Brasil - área de alimentação; Guadalupe e Guiana Francesa - áreas de desova), com base em sequências da região controle do DNA mitocondrial (mtDNA) e 10 loci de microssatélites. As análises de mtDNA demonstraram que a área amostrada no Brasil tem perfil genético semelhante às outras áreas de alimentação da costa brasileira. De maneira semelhante, o perfil genético das duas áreas de desova é bastante similar ao de outros sítios reprodutivos na região do Caribe. As análises de estoque misto revelaram que os indivíduos juvenis no Brasil são provenientes principalmente da Ilha Ascensão, Guiana Francesa e Guiné Bissau. Os microssatélites detectaram estrutura genética entre as três populações, apesar de haver um fluxo de migrantes entre elas, especialmente de indivíduos da Guiana Francesa em direção ao Brasil e Guadalupe. Guiana Francesa, Guadalupe e Brasil apresentaram declínio populacional severo, detectado pelos microssatélites. Apesar da distribuição global, as populações de tartarugas-verdes estão sujeitas a diferentes pressões nos habitats que ocupam, e é importante entender quais populações estão ameaçadas. Este estudo enfatiza a importância da conectividade entre áreas de alimentação e desova que podem estar amplamente distribuídas de acordo com oportunidades ou restrições ecológicas, adicionando informações a respeito da dispersão e a dinâmica de tartarugas-verdes que frequentam o Oceano Atlântico / Sea turtles are reptiles with a long lifespan that undertake wide-ranging migrations through feeding and nesting sites, resulting in successive stages of mixing and isolating genetic stocks, both spatially and temporally. The green sea turtle (Chelonia mydas) is threatened with extinction, and it is essential to understand its population dynamics and distribution in order to manage and preserve the species. The aim of this study was to analyze the genetic diversity, population structure, natal origins and demographic history of C. mydas in three sites in the Atlantic Ocean (Rio de Janeiro state, Brazil - feeding ground; Guadeloupe and French Guiana - nesting sites), based on sequences of the mitochondrial DNA (mtDNA) control region and 10 microsatellites loci. The mtDNA analyses demonstrated that Brazilian samples have the same genetic profile of others collected in feeding grounds in the Brazilian coast. Similarly, the genetic profile of the nesting sites has resemblances to others in the Caribbean region. The mixed stock analyses revealed that most of the juveniles in Rio de Janeiro state come from Ascension Island, French Guiana and Guinea Bissau. Microsatellites detected genetic structure among the three populations, even with migration flows, especially in individuals from French Guiana to Brazil and Guadeloupe. French Guiana, Guadeloupe and Brazil presented a severe population decline, detected by the microsatellites analyses. Despite the worldwide distribution, green sea turtle populations undergo different pressures at the habitats they occupy, and it is important to understand which populations are threatened. This study emphasizes the importance of connecting nesting and feeding areas that can be widely distributed according to ecological opportunities or constraints, adding information on dispersion and population dynamics of green sea turtles on Atlantic Ocean
32

Juvenile Green Turtle (chelonia Mydas) Foraging Ecology:feeding Selectivity And Forage Nutrient Analysis

Gilbert, Eliza 01 January 2005 (has links)
For the endangered green turtle, Chelonia mydas, a fundamental component of recovery and conservation is an understanding of its foraging ecology. Foraging optimality models suggest animals will select resources of high quality over those of low quality. For green turtles, this behavior is important, as sufficient quantities of nutritionally adequate forage items are necessary for growth and reproduction. One intrinsic element in the understanding of green turtle foraging ecology is to identify and document the availability and quality of forage resources preferred by green turtles. The objectives of this study were: 1) determine whether juvenile green turtles showed a feeding preference by comparing prey items in the diet to the availability of those items in the habitat, 2) identify species for which there was selection or avoidance, 3) identify nutritional factors determining selection or avoidance of prey items, and 4) evaluate the nutritional content of the diet. This research was conducted by comparing lavage samples from juvenile green turtles to samples from benthic surveys within the habitat. To determine feeding preference, Ivlev's Electivity Index was used to compare ingested species of algae with those available in the habitat. Nutritional analysis of forage was conducted to identify possible nutrients relating to feeding preference. Juvenile green turtles selectively foraged on Chlorophyta and Rhodophyta. Results indicate that diet selection was based on nutritional content. Both the composite diet and the main diet item, Hypnea spp, had a higher gross energy value, were higher in protein, and lower in fiber than prey items that were avoided. Conservation of green turtles requires effective habitat management, which must be informed by an understanding and evaluation of the habitat. For juvenile green turtles, this study indicates that habitats dominated by Chlorophyta and Rhodophyta may be more important for the health of green turtle populations than habitats dominated by Phaeophyta.
33

Abiotic Differences Between Green Turtle (chelonia Mydas) Nests In Natural Beach And Engineered Dunes: Effects On Hatching Success

Balfour, Martha 01 January 2010 (has links)
Habitat loss is among the biggest threats to conservation worldwide, so habitat restoration plays an increasing role in endangered species management. This is especially true for species with high site fidelity, such as nesting marine turtles. Sand replenishment is commonly used to restore coastal beaches after severe erosion events, and may affect marine turtles and other species that live or reproduce in that habitat. I investigated how abiotic characteristics of sand used in a dune restoration project at Archie Carr National Wildlife Refuge, Florida, affected reproduction of the federally-endangered green turtle (Chelonia mydas). Sand structure and composition can affect egg development and hatching success by altering nest conditions, with nests in fine-grain or very coarse sand suffering decreased hatching success. I determined that calcium carbonate content (27.0% ± 1.4 SE vs. 15.1% ± 3.8 SE), moisture content (3.29% ± 0.26 SE vs. 4.59% ± 0.25 SE), and grain size (427.53 µm ± 14.1 SE vs. 274.66 µm ± 29.1 SE) differed significantly between natural and restored dunes. Hatching success of green turtles (44.7% ± 6.2 SE vs. 65.8% ± 5.3 SE) was significantly lower on restored dunes compared to natural dunes with an estimated loss of 22,646 hatched eggs. Hatching success also decreased as the nesting season progressed. These results demonstrate the importance of regulating fill material used in beach restoration projects; substrate characteristics are easily evaluated and can significantly influence marine turtle hatching success.
34

Hatching success, embryonic mortality, and infertility in loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles nesting in Brevard County, Florida

Osegovic, Karen M. 01 July 2001 (has links)
No description available.
35

The Impact Of Artificial Beach Lighting And Beach Renourishment On Loggerhead (Caretta Caretta) And Green Turtle (Chelonia Mydas) Nesting Success

Casaburi, Amanda M 01 January 2024 (has links) (PDF)
Sea turtles face numerous threats on their nesting beaches, including habitat degradation, artificial lighting, and human interventions like beach nourishment projects. These factors can disrupt nesting behavior and reduce overall reproductive success. This study examined the impact of anthropogenic disturbances, specifically artificial lighting and beach nourishment projects, on the nesting success (quantified as portion of adult female emergences resulting in a nest) of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) in southern Brevard County, Florida. Utilizing a long-term dataset (1989-2023) from the UCF Marine Turtle Research Group, the research focused on the Archie Carr National Wildlife Refuge (ACNWR), a site with minimal lighting and development, and the Brevard County Mid Reach, an area characterized by high levels of artificial lighting and development. I aimed to: (1) evaluate the effects of artificial lighting on nesting success by comparing 1989-2023 data from ACNWR and Mid Reach; (2) assess the impact of beach nourishment projects by analyzing nesting success before and after nourishment events, which began in 2005; and (3) explore the interaction between artificial lighting and beach nourishment by comparing nesting success in areas with varying levels of lighting and development. The study found that both loggerhead and green turtle nesting success were lower in areas with high-lighting compared to more natural, low-lighting areas, as well as following more frequent, larger-scale nourishment projects. This research provides new insights into how these human activities influence sea turtle nesting behaviors and the effectiveness of conservation measures like the establishment of the ACNWR in mitigating these impacts. Findings can contribute to the development of strategies to enhance sea turtle conservation efforts in regions experiencing similar pressures.
36

Growth rates and body condition of juvenile green turtles (Chelonia mydas) in Dry Tortugas National Park and Marine Protected Area

Unknown Date (has links)
Dry Tortugas National Park (DRTO) consists of 261.8 km2 in the Gulf of Mexico and provides protection to marine species facing a multitude of threats. Among the many species that utilize DRTO is the green sea turtle (Chelonia mydas). I examined seven years of capture-recapture data to determine how the body condition (using Fulton’s equation, K = M/L3) and growth rate for juvenile green turtles vary within, and among size classes in DRTO, and how those rates compare to similar populations in other locations. Body conditions ranged from 0.77 to 1.71 (mean 1.3 SD ± 0.16). Growth rates ranged from 2.5 to 9.9cm/yr (mean 5.5 cm/yr SD ± 1.25), which is a high growth rate for green turtles. Establishing growth rates and body condition for a specific population can provide insight into life history and health of that population, as well as important data for comparison to populations in other areas. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
37

Caracterização espacial e temporal da fibropapilomatose em tartarugas marinhas da costa brasileira / Spatiotemporal characterization of fibropapillomatosis in sea turtles of the Brazilian Coast

Baptistotte, Cecilia 11 December 2007 (has links)
Fibropapilomatose (FP) é uma doença caracterizada por múltiplas massas de tumores cutâneos variando de 0,1 a mais de 30 cm em diâmetro. Afeta primariamente tartarugas-verdes (Chelonia mydas), mas também outras espécies de tartarugas marinhas ao redor do mundo. O objetivo deste estudo é, através de dados já sistematicamente coletados pelo Programa Brasileiro de Proteção, Pesquisa e manejo das Tartarugas Marinhas - Projeto TAMAR-IBAMA, caracterizar, no tempo e no espaço, a ocorrência desta doença em tartarugas marinhas na costa brasileira, entre os anos de 2000 a 2005. As tartarugas encontradas, vivas ou mortas, foram identificadas, medidas e examinadas quanto à presença ou ausência de tumores. Nesse período foram examinadas 10.170 tartarugas marinhas, sendo 1.243 tartarugas-de-pente, (Eretmochelys imbricata), das quais 2 apresentaram tumores; entre as 250 tartarugas- cabeçudas, (Caretta caretta), 5 apresentaram tumores; entre as 288 tartarugas-oliva (Lepidochelys olivacea), 3 apresentaram tumores; nenhuma das 30 tartarugas-gigantes, (Dermochelys coriacea) examinadas tinham tumores. A maior parte dos registros (82,20 %; 8.359 de 10.170) correspondeu a tartarugas-verdes (Chelonia mydas), das quais 1.288 apresentavam tumores. Foram coletadas amostras de tumores de 80 tartarugas para análise histopatológica; todas foram positivas para fibropapilomatose. A média da prevalência nacional geral para Chelonia mydas foi de 15.41%; apenas nas áreas costeiras a doença foi verificada. Nenhuma ocorrência foi registrada nas ilhas oceânicas do Atol das Rocas e do Arquipélago de Fernando de Noronha. Os resultados das freqüências de tumores por estado foram: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco-Arquipélago de Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte-região costeira, 31,43% (33/105); Rio Grande do Norte-Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73 % (371/3456). Os animais afetados variaram de juvenis com comprimento curvilíneo de carapaça (CCC) mínimo de 30,0 cm, subadultos a adultos com máximo de 112 cm. A prevalência de tumores associado a fibropapilomatose aumentou com o CCC até 80,0 cm e decresceu abruptamente. A caracterização da doença foi realizada com um grupo de 202 tartarugas verdes afetadas em uma agregação no Estado do Espírito Santo. Nesse grupo, o número de tumores variou de 1 a 179 tumores em um único animal, tendo como média 21 tumores por tartaruga afetada. 72,5 % dos tumores estavam localizados na região anterior corpórea do animal, 25,2% na região posterior e 2,3% na carapaça e plastrão. Nenhuma tartaruga apresentou tumores na cavidade oral. Para análise de escore de tumor em tartarugas afetadas com FP, o escore de tumor 1 e 2 foi predominante, com 40,61% (80 de 197) e 51,27% (101 de 197) respectivamente. Apenas 8,12% (16 de 197) das tartarugas tiveram escore de tumor 3. / Fibropapilomatosis (FP) is a disease characterized by multiple masses of cutaneous tumors varying from 0,1 to more than 30 cm in diameter. It has affected primarily green turtles (Chelonia mydas), but also other species of sea turtles around the world. The aim of this study is, through the data already systematically collected by the Brazilian Sea Turtle Protection, Research and Management Program - Projeto TAMAR - IBAMA to characterize the occurrence of this disease in marine turtles along the Brazilian coast to within time and space, from 2000 to 2005. Turtles found alive or dead were identified as for the species, measured and examined as for the presence or absence of tumors. 10.170 sea turtles were examined: 1.243 of them were Hawksbills (Eretmochelys imbricata), two of which showed tumors; five of the 250 loggerhead turtles (Caretta caretta) and three of 288 olive ridley\'s turtles (Lepidochelys olivacea), showed tumors; none of the 30 leatherback (Dermochelys coriacea) carried tumors. Mostly of the records, (82,20%; 8.359/10170) corresponded to green turtles (Chelonia mydas), 1.288 of which had tumors. Samples of tumors were collected from 80 turtles for histopathologycal analysis; all examined samples were positive for fibropapillomatosis. The average nationwide tumor prevalence in Chelonia mydas was 15.41%; the disease was detected only in coastal areas: no occurrence was recorded for the oceanic islands of Atol das Rocas and Fernando de Noronha Archipelago. The tumor frequencies by state were: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco - Archipelago of Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte- coastal area, 31,43% (33/105); Rio Grande do Norte - Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73% (371/3456). The affected animals varied from juvenile, with minimum curved carapace length (CCC) 30,0 cm to sub-adults, adults with a maximum 112 cm. The prevalence of tumours associated to fibropapillomatosis increased with CCC up to 80,0 cm and then decreased abruptly. The number of tumors in 202 affected green turtles from an aggregation in the state of Espírito Santo varied from 1 to 179 tumors in a single animal, with an average of 21 tumors per affected turtle. 72,5% of tumors were located in the anterior half of the animal\'s bodies, 25,2% in the posterior area, 2,3% on the shell and plastron. No turtle had tumors in the oral cavity. A predominance of turtles was registered with tumors score 1, 40,61% (80 of 197) and score 2, 51,27% (101/197). Only 8,12% (16/197) of the turtles that had score 3. For analysis of tumor score in affected turtles with FP, the tumors score 1 and 2 was predominant, with (40,61%; 80 of 197) and (51,27%; 101/197) respectively. Only 8,12 % (16/197) of the turtles attained tumors score 3.
38

Caracterização espacial e temporal da fibropapilomatose em tartarugas marinhas da costa brasileira / Spatiotemporal characterization of fibropapillomatosis in sea turtles of the Brazilian Coast

Cecilia Baptistotte 11 December 2007 (has links)
Fibropapilomatose (FP) é uma doença caracterizada por múltiplas massas de tumores cutâneos variando de 0,1 a mais de 30 cm em diâmetro. Afeta primariamente tartarugas-verdes (Chelonia mydas), mas também outras espécies de tartarugas marinhas ao redor do mundo. O objetivo deste estudo é, através de dados já sistematicamente coletados pelo Programa Brasileiro de Proteção, Pesquisa e manejo das Tartarugas Marinhas - Projeto TAMAR-IBAMA, caracterizar, no tempo e no espaço, a ocorrência desta doença em tartarugas marinhas na costa brasileira, entre os anos de 2000 a 2005. As tartarugas encontradas, vivas ou mortas, foram identificadas, medidas e examinadas quanto à presença ou ausência de tumores. Nesse período foram examinadas 10.170 tartarugas marinhas, sendo 1.243 tartarugas-de-pente, (Eretmochelys imbricata), das quais 2 apresentaram tumores; entre as 250 tartarugas- cabeçudas, (Caretta caretta), 5 apresentaram tumores; entre as 288 tartarugas-oliva (Lepidochelys olivacea), 3 apresentaram tumores; nenhuma das 30 tartarugas-gigantes, (Dermochelys coriacea) examinadas tinham tumores. A maior parte dos registros (82,20 %; 8.359 de 10.170) correspondeu a tartarugas-verdes (Chelonia mydas), das quais 1.288 apresentavam tumores. Foram coletadas amostras de tumores de 80 tartarugas para análise histopatológica; todas foram positivas para fibropapilomatose. A média da prevalência nacional geral para Chelonia mydas foi de 15.41%; apenas nas áreas costeiras a doença foi verificada. Nenhuma ocorrência foi registrada nas ilhas oceânicas do Atol das Rocas e do Arquipélago de Fernando de Noronha. Os resultados das freqüências de tumores por estado foram: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco-Arquipélago de Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte-região costeira, 31,43% (33/105); Rio Grande do Norte-Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73 % (371/3456). Os animais afetados variaram de juvenis com comprimento curvilíneo de carapaça (CCC) mínimo de 30,0 cm, subadultos a adultos com máximo de 112 cm. A prevalência de tumores associado a fibropapilomatose aumentou com o CCC até 80,0 cm e decresceu abruptamente. A caracterização da doença foi realizada com um grupo de 202 tartarugas verdes afetadas em uma agregação no Estado do Espírito Santo. Nesse grupo, o número de tumores variou de 1 a 179 tumores em um único animal, tendo como média 21 tumores por tartaruga afetada. 72,5 % dos tumores estavam localizados na região anterior corpórea do animal, 25,2% na região posterior e 2,3% na carapaça e plastrão. Nenhuma tartaruga apresentou tumores na cavidade oral. Para análise de escore de tumor em tartarugas afetadas com FP, o escore de tumor 1 e 2 foi predominante, com 40,61% (80 de 197) e 51,27% (101 de 197) respectivamente. Apenas 8,12% (16 de 197) das tartarugas tiveram escore de tumor 3. / Fibropapilomatosis (FP) is a disease characterized by multiple masses of cutaneous tumors varying from 0,1 to more than 30 cm in diameter. It has affected primarily green turtles (Chelonia mydas), but also other species of sea turtles around the world. The aim of this study is, through the data already systematically collected by the Brazilian Sea Turtle Protection, Research and Management Program - Projeto TAMAR - IBAMA to characterize the occurrence of this disease in marine turtles along the Brazilian coast to within time and space, from 2000 to 2005. Turtles found alive or dead were identified as for the species, measured and examined as for the presence or absence of tumors. 10.170 sea turtles were examined: 1.243 of them were Hawksbills (Eretmochelys imbricata), two of which showed tumors; five of the 250 loggerhead turtles (Caretta caretta) and three of 288 olive ridley\'s turtles (Lepidochelys olivacea), showed tumors; none of the 30 leatherback (Dermochelys coriacea) carried tumors. Mostly of the records, (82,20%; 8.359/10170) corresponded to green turtles (Chelonia mydas), 1.288 of which had tumors. Samples of tumors were collected from 80 turtles for histopathologycal analysis; all examined samples were positive for fibropapillomatosis. The average nationwide tumor prevalence in Chelonia mydas was 15.41%; the disease was detected only in coastal areas: no occurrence was recorded for the oceanic islands of Atol das Rocas and Fernando de Noronha Archipelago. The tumor frequencies by state were: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco - Archipelago of Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte- coastal area, 31,43% (33/105); Rio Grande do Norte - Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73% (371/3456). The affected animals varied from juvenile, with minimum curved carapace length (CCC) 30,0 cm to sub-adults, adults with a maximum 112 cm. The prevalence of tumours associated to fibropapillomatosis increased with CCC up to 80,0 cm and then decreased abruptly. The number of tumors in 202 affected green turtles from an aggregation in the state of Espírito Santo varied from 1 to 179 tumors in a single animal, with an average of 21 tumors per affected turtle. 72,5% of tumors were located in the anterior half of the animal\'s bodies, 25,2% in the posterior area, 2,3% on the shell and plastron. No turtle had tumors in the oral cavity. A predominance of turtles was registered with tumors score 1, 40,61% (80 of 197) and score 2, 51,27% (101/197). Only 8,12% (16/197) of the turtles that had score 3. For analysis of tumor score in affected turtles with FP, the tumors score 1 and 2 was predominant, with (40,61%; 80 of 197) and (51,27%; 101/197) respectively. Only 8,12 % (16/197) of the turtles attained tumors score 3.
39

Historical Responses Of Marine Turtles To Global Climate Change And Juvenile Loggerhead Recruitment In Florida

Reece, Joshua 01 January 2005 (has links)
Marine turtle conservation is most successful when it is based on sound data incorporating life history, historical population stability, and gene flow among populations. This research attempts to provide that information through two studies. In chapter I, I identify historical patterns of gene flow, population sizes, and contraction/expansion during major climatic shifts. In chapter II, I reveal a life history characteristic of loggerhead turtles previously undocumented. I identify a pattern of juvenile recruitment to foraging grounds proximal to their natal nesting beach. This pattern results in a predictable recruitment pattern from juvenile foraging ground aggregations to local rookeries. This research will provide crucial information to conservation managers by demonstrating how sensitive marine turtles are to global climate change. In the second component of my research, I demonstrate how threats posed to juvenile foraging grounds will have measurable effects on rookeries proximal to those foraging grounds. The addition of this basic life history information will have dramatic effects on marine turtle conservation in the future, and will serve as the basis for more thorough, forward-looking recovery plans.
40

An Assessment Of Sea Turtle Nesting Behavior In Relation To Hurricane- And Restoration-induced Beach Morphodynamics

Long, Tonya Michele 01 January 2010 (has links)
Coastal habitats are highly dynamic and vulnerable to landscape-level disturbances such as storms and restoration projects. Along the east coast of Florida these areas are particularly valuable as they provide significant nesting habitat for two sea turtle species, the threatened loggerhead (Caretta caretta) and the endangered green turtle (Chelonia mydas). This coast was heavily impacted by three major hurricanes in 2004 and in some areas by large restoration projects in 2005. Recent remote sensing methods allow for broad evaluation of the shoreline and thus the ability to assess sea turtle nesting habitat at a landscape scale. I collected nesting data for southern Brevard County, Florida from 1989 – 2005 and for Canaveral National Seashore, Florida from 1995 – 2005. I used LiDAR (Light Detection and Ranging) and IfSAR (Interferometric Synthetic Aperture Radar) remote sensing to map sea turtle nesting habitat in both areas following the 2004 hurricanes and any subsequent restoration. Canaveral National Seashore underwent no restoration while southern Brevard County received extensive restoration. Topographic variables (e.g., total sand volume, width, and slope) derived from the remote sensing data were compared across three time periods (pre-hurricane, posthurricane, and recovery period) and I compared nesting success data from 2004 to 2005. I built regression models for 2004 and 2005 to determine which topographic features influenced loggerhead and green turtle nesting the most. Green turtle nesting success declined from 2004 to 2005 only in highly restored areas while loggerhead nesting sucess declined throughout. Hurricanes caused a reduction in most of the topographic variables and restoration predominantly impacted aspects of the beach profile (e.g. slope and width). Loggerheads responded to profile characteristics (e.g. upper and lower iii beach slopes) though green turtles showed no consistent response to topography. The results indicate that both loggerheads and green turtles are sensitive to beach restoration, although loggerhead nesting is more influenced by beach morphology and green turtle nesting may be influenced more by other dune features such as vegetation cover.

Page generated in 0.0361 seconds