Spelling suggestions: "subject:"2around source"" "subject:"4wsground source""
41 |
Control and energy optimization of ground source heat pump systems for heating and cooling in buildingsCervera Vázquez, Javier 30 June 2016 (has links)
[EN] In a context of global warming concern and global energy policies, in which heating and cooling systems in buildings account for a significant amount of the global energy consumption, ground source heat pump (GSHP) systems are widely considered as being among the most efficient and comfortable heating and cooling renewable technologies currently available.
Nevertheless, both an optimal design of components and an optimal operation of the system as a whole become crucial so that these systems can have a significant contribution to the attenuation of the global energy problem.
The overall objective of this PhD dissertation is to perform the control and energy optimization of an experimental GSHP system installed at the Universitat Politècnica de València, making the control system adaptive to the thermal demand of the building and to the climate conditions.
For that purpose, different control strategies are proposed, described, developed, implemented and tested in the system.
The optimization of any system requires a comprehensive study of its behaviour, by means of a thorough analysis of all the variables and parameters implied on its performance.
Therefore, the first step is to analyse the short-term performance of the system, but also the long-term performance based on the experimental data collected at the installation.
Second and prior to developing any optimization strategies, it is important to analyse the optimal configuration of the system according to the objectives targeted.
This objective includes the study of the best location for the temperature control sensor and the buffer tank, as well as an adequate size for this buffer tank.
Finally, once the behaviour of the system has been fully understood, the components of the system are the most efficient according to the possibilities of the research work and they have been connected adequately, the final objective is to develop control and optimization strategies which optimize the operation of the experimental GSHP system.
These strategies target the control of the heat pump compressor, but also and more importantly, the energy optimization of the complete system.
The focus is not in optimizing the performance of each individual component, but in optimizing the energy performance of the system working as a whole.
In this direction, a first approach which combined a temperature compensation strategy and the variation of the frequency of the water circulation pumps, and hence the flow rate, as a function of the thermal load of the building, was first attempted.
The application of this first approach resulted in significant energy savings, but also in a lack of user comfort in some of the offices under extreme weather conditions during summer.
Consequently, the control and optimization methodology has been upgraded in a global algorithm (which is the final result of this PhD thesis) which couples both strategies in order to ensure the user comfort while keeping significant energy savings.
In brief, this PhD work provides a comprehensive experimental study for the energy optimization of a GSHP system for both cooling and heating operation.
Experimental results for a one-year operation period demonstrate important energy savings when compared to the standard control operation, up to 35% in the summer season and 53% in the winter season, while keeping the user comfort. / [ES] En un contexto de creciente preocupación por el calentamiento global y de políticas energéticas internacionales, en el cual los sistemas de climatización en edificios representan una parte importante del consumo energético global, los sistemas de bomba de calor geotérmica están ampliamente considerados como una de las tecnologias de climatización de espacios más eficientes disponibles en la actualidad.
Sin embargo, tanto un buen diseño de los componentes como una óptima operación del sistema son de vital importancia para que estos sistemas puedan contribuir de manera significativa a atenuar el problema energético global.
El objetivo general de esta tesis doctoral es el control y la optimización energética de una instalación experimental de bomba de calor geotérmica construida en la Universitat Politècnica de València, haciendo que el sistema de control se adapte a la demanda térmica del edificio y a las condiciones climatológicas.
Para ello, se proponen diferentes estrategias de control, las cuáles son descritas, desarrolladas, implementadas y evaluadas a lo largo de este trabajo de investigación.
La optimización de cualquier sistema requiere un amplio estudio de su comportamiento, analizando concienzudamente todas las variables y parámetros implicados en su funcionamiento.
Por tanto, el primer paso llevado a cabo es el análisis de los días típicos de funcionamiento de la instalación, pero también su comportamiento a más largo plazo, a partir de los datos experimentales recogidos.
En segundo lugar, y como paso previo al desarrollo de las estrategias de optimización, es importante analizar la configuración óptima del sistema de acuerdo con los objetivos perseguidos.
Este objetivo incluye el estudio de la posición del sensor de temperatura empleado para el control y del depósito de inercia, así como el dimensionamiento adecuado de este depósito.
Finalmente, una vez se ha analizado en profundidad el funcionamiento del sistema, los componentes del mismo son lo más eficientes posible, y éstos han sido conectados de manera adecuada, el objetivo final es el desarrollo de estrategias de control y optimización energética que optimicen la operación de la instalación experimental de bomba de calor geotérmica.
Estas estrategias se dirigen principalmente a la optimización del sistema completo.
El objetivo no es optimizar el funcionamiento de cada componente de manera individual, sino optimizar el comportamiento energético del sistema trabajando como un todo.
En este sentido, se desarrolló una primera metodología que combinaba la compensación de la temperatura de consigna de la bomba de calor en función de la temperatura ambiente exterior, y la variación de la frecuencia de las bombas de circulación (y por tanto el caudal de agua) en función de la carga térmica del edificio.
La aplicación de esta primera estrategia resultó en una importante mejora del rendimiento energético, pero también en la pérdida de confort en algunas de las oficinas climatizadas cuando las condiciones climatológicas eran extremas durante el verano.
En consecuencia, la metodología de control y optimización desarrollada fue mejorada dando como resultado un algoritmo global de optimización energética (que es el resultado final de esta tesis), el cual acopla ambas estrategias anteriores de manera que se cumpla el confort del usuario y se mantenga un ahorro de energía significativo.
En resumen, esta tesis doctoral proporciona un estudio experimental exhaustivo de la optimización energética de un sistema de bomba de calor geotérmica para la climatización de un edificio de oficinas.
Los resultados experimentales para un año completo de funcionamiento del sistema muestran un ahorro de energía significativo en comparación con el modo de control de referencia, hasta un 35% en modo refrigeración y un 53% en modo calefacción, a la vez que se mantiene el confort de los usuarios. / [CA] En un context de creixent preocupació per l'escalfament global i de polítiques energètiques internacionals, en el qual els sistemes de climatització en edificis representen una part important del consum energètic global, els sistemes de bomba de calor geotèrmica estan amplament considerats com una de les tecnologies de climatització més eficients disponibles en la actualitat pel que fa a la climatització d'espais.
No obstant això, tant un bon disseny dels components com una operació òptima del sistema són de vital importància per tal que aquests sistemes puguen contribuir de manera significativa a atenuar el problema energètic global.
L'objectiu general d'aquesta tesi doctoral és el control i l'optimització energètica d'una instal·lació experimental de bomba de calor geotèrmica construïda a la Universitat Politècnica de València, fent que el sistema de control s'adapte a la demanda tèrmica de l'edifici i a les condicions climatològiques.
Amb aquest objectiu, es proposen diferents estratègies de control, les quals són descrites, desenvolupades, implementades i avaluades al llarg d'aquest treball d'investigació.
L'optimització de qualsevol sistema requereix un ampli estudi del seu comportament, analitzant conscienciosament totes les variables i paràmetres implicats en el seu funcionament.
Per tant, el primer pas duit a terme és l'anàlisi dels dies típics de funcionament de la instal·lació, però també el seu comportament a més llarg termini, a partir de les dades experimentals recollides.
En segon lloc, i com pas previ al desenvolupament de les estratègies d'optimització, és important analitzar la configuració òptima del sistema d'acord als objectius perseguits.
Aquest objectiu inclou l'estudi de la posició del sensor de temperatura emprat pel control i del dipòsit d'inèrcia, així com el correcte dimensionament d'aquest dipòsit.
Finalment, una vegada s'ha analitzat en profunditat el funcionament del sistema, els components d'aquest són el més eficients possible, i han sigut connectats de manera adequada, l'objectiu final és el desenvolupament d'estratègies de control i optimització energètica les quals optimitzen l'operació de la instal·lació experimental de bomba de calor geotèrmica.
Aquestes estratègies es dirigeixen principalment a l'optimització del sistema complet.
L'objectiu no és optimitzar el funcionament de cada component de manera aïllada, sinó més bé optimitzar el comportament energètic del sistema treballant com un tot.
En aquest sentit, es va desenvolupar una primera metodologia que combinava la compensació de la temperatura de consigna de la bomba de calor en funció de la temperatura ambient exterior, i la variació de la freqüència de les bombes de circulació (i per tant del cabdal d'aigua) en funció de la càrrega tèrmica de l'edifici.
L'aplicació d'aquest primer apropament va resultar en una important millora del rendiment energètic, però també en la pèrdua de confort en algunes de les oficines climatitzades quan les condicions climatològiques eren extremes durant l'estiu.
En conseqüència, la metodologia de control i optimització desenvolupada va ser millorada resultant en un algoritme global d'optimització energètica (resultat principal d'aquesta tesi), el qual acobla ambdues estratègies anteriors de manera que es complisca el confort de l'usuari i es mantinga un important estalvi d'energia.
En resum, aquesta tesi doctoral proporciona un estudi experimental exhaustiu de l'optimit\-zació energètica d'un sistema de bomba de calor geotèrmica per la climatització d'un edifici d'oficines.
Els resultats experimentals per un any complet de funcionament del sistema mostren un estalvi d'energia significatiu en comparació amb el mode de control de referencia, fins un 35% en mode refrigeració i un 53% en mode calefacció, a la vegada que es manté el confort dels usuaris. / Cervera Vázquez, J. (2016). Control and energy optimization of ground source heat pump systems for heating and cooling in buildings [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/66748
|
42 |
Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, VirginiaCharoenvisal, Kongkun 14 August 2008 (has links)
Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house gas emissions. As a result often environmental design strategies are focused on the performance of these systems. New HVAC technologies such as Geothermal Heat Pump systems have relatively high performance efficiencies when compared to typical systems and therefore could be part of whole-building performance design strategies.
In collaboration with the Virginia Tech Corporate Research Center, Inc., this research studies the energy consumption and cost benefits of the Geothermal Heat Pump System that has been integrated and operated in the KnowledgeWorks I and II buildings located on the Virginia Tech campus.
The purpose of this thesis is to understand the energy and cost benefits of the Geothermal Heat Pumps System when compared to the conventional package variable air volume (VAV) with hot water coil heating and air-source heat pump systems using computer simulation and statistical models. The quantitative methods of building energy performance and life-cycle cost analyses are applied to evaluate the results of simulation models, the in-situ monitoring data, and the associated documents. This understanding can be expanded to the higher level of architectural systems integration. / Master of Science
|
43 |
Effects of coolant flow rate, groundwater table fluctuations and infiltration of rainwater on the efficiency of heat recovery from near surface soil layersMohamed, Mostafa H.A., El Kezza, O., Abdel-Aal, Mohamad, Schellart, A., Tait, Simon J. 19 June 2014 (has links)
No / This paper aims to investigate experimentally the effects of circulating coolant flow rate, groundwater table fluctuations, infiltration of rainwater, on the amount of thermal energy that can be recovered from the near surface soil layers. A comprehensive experimental investigation was carried out on a fully equipped tank filled with sand. A heat collector panel was embedded horizontally at the mid-height of the tank. Measurements of the temperature at various points on the heat collector panel, adjacent soil, inlet and outlet were continuously monitored and recorded. After reaching a steady state, it was observed that increasing water saturation in the adjacent soil leads to a substantial increase on the amount of heat recovered. A model was proposed for the estimation of temperature along the heat collector panel based on steady state conditions. It accounted for thermal resistance between pipes and the variability of water saturation in the adjacent soils. This model showed good agreement with the data. Whilst increasing the flow rate of the circulating fluid within the panel did not cause noticeable improvement on the amount of heat energy that can be harnessed within the laminar flow regime commonly found in ground source heat panels. Infiltration of rainwater would cause a temporary enhancement on the amount of extracted heat. Measurement of the sand thermal conductivity during a cycle of drying and wetting indicates that the thermal conductivity is primarily dependent upon the degree of water saturation and secondary on the flow path.
|
44 |
Ekonomisk driftoptimering av det termiska energisystemet på Karlstad centralsjukhus : Framtida driftrekommendationer baserat på linjärprogrammering / Economic operational optimization of the thermal energy system at Karlstad central hospital : Future operation recommendations based on linear programmingMellander, Petter January 2022 (has links)
Studien använder linjärprogrammering för att optimera driften av det termiska energisystemet på Karlstad centralsjukhus ur ett ekonomiskt perspektiv. Bakgrunden till studien är de höga elpriser som rådde under slutet av 2021 samt att det i dagsläget finns kunskapsluckor angående hur systemet bör köras optimalt. Studien baseras på driftdata från 2021. Energisystemet som optimeras är uppbyggt av kylvärmepumpar, bergvärmepumpar, kylmaskiner, frikyla, fjärrvärme och marklager. Ett förhållande för hur många kWh termisk energi som produceras per tillförd kWh el tas fram för samtliga komponenter, vilket sedan används för att modellera energisystemet. Optimering av systemet ger vilka komponenter som skall användas vid olika tidpunkter för att uppfylla ett bestämt värmebehov och kylbehov. Resultatet i form av optimal drift under 2021 analyseras och används för att ta fram driftrekommendationer för energisystemet i framtiden. En metod för att teoretiskt begränsa marklagrets kapacitet vid optimering presenteras. Metodenanvänder nettoenergi till marklagret över en specifik tidsperiod för att approximera temperaturen på brinevätskan ut ur marklagret. Genom att sätta temperaturbegränsningar på brinevätskan kan därigenom nettoenergin till marklagret begränsas. Baserat på data från 2021 tillåts nettoenergin till marklagretvariera mellan -14 700 kWh och 12 500 kWh per 24 timmar. Resultaten visar att det under vintern är fördelaktigt att primärt använda bergvärmepumparna A-D i kombination med frikyla. Sekundärt används kylvärmepumparna E-F. Skillnaden mellan primär och sekundär systemlösning är liten och de båda kan ses som relativt likvärdiga. Fjärrvärme används enbart som sista alternativ under vintern. Energikällan för bergvärmepumparna bör variera mellan Klarälven och marklager med avsikt att utnyttja marklagrets kapacitet optimalt. Vår och höst fallet är till stora delar likvärdigt med vinterfallet med undantaget att det innehåller fler variationer till följd av förändringar i omgivande förutsättningar. Under sommaren bör enbart fjärrvärme användas för att tillgodose värmebehovet. Frikyla och kylmaskinerna 2-3 används för att tillgodose kylbehovet. Frikyla reserveras till att användas under de tidpunkter då kylbehovet är som högst. Effektavgiften för fjärrvärme står för 25,7 % av total driftkostnad i optimalt driftfall. För att minska kostnaderna anses det därför viktigt att kapa effekttopparna för fjärrvärme. Studien undersöker eventuella fördelar med att koppla frikyle-värmeväxlaren mot Klarälven med avsikt att kunna utnyttja den mer än vad som görs i dagsläget. Systemlösningen ger ingen signifikant minskning av driftkostnader vid simulering av ett års drift. Det kan dock vara fördelaktigt att koppla frikyla mot Klarälven ur perspektivet att kunna justera nettoenergin till marklagret för att förhindra långsiktiga temperaturförändringar i berggrunden. Årlig driftkostnad kan minskas genom att öka maxkapaciteten för värmepumparna. En ökning avbergvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 4,6 %. En ökning av kylvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 1,5 %. Att öka maxkapaciteten för övriga komponenter ger ingen signifikant förändring av årlig driftkostnad. Förbättring av studien innebär att basera modellen på bättre indata samt ta hänsyn till fler detaljer i systemet. Vidare studier bör fokusera på att tillämpa resultaten för att verifiera dem i verkligheten samt göra investeringskalkyler över att utöka kapaciteten för värmepumparna. / The study uses linear programming to optimize the operation of the thermal energy system at Karlstad Central Hospital from an economic perspective. The background to the study is the high electricity prices that occurred at the end of 2021 and the fact that there are currently knowledge gaps regarding how the system should be run optimally. The study is based on operational data from 2021. The energy system that is optimized is made up of cooling heat pumps, ground source heat pumps, cooling machines, free cooling, district heating and ground storage. A ratio for how many kWh of thermal energy that is produced per kWh of supplied electricity was produced for all components, which was then used to model the energy system. Optimization of the system provides which components are to be used at different times to meet a specific heating and cooling demand. The result in the form of optimal operation during 2021 is analyzed and used to produce operating recommendations for the energy system in the future. A method for theoretically limiting the capacity of the ground storage during optimization is presented. The method uses net energy to the ground storage over a specific period of time to approximate the temperature of the brine liquid out of the ground storage. By setting temperature limits on the brine liquid, the net energy to the ground storage can thereby be limited. Based on data from 2021, the net energy to the ground storage is allowed to vary between -14 700 kWh and 12 500 kWh per 24 hours. The results show that during the winter it is advantageous to primarily use the ground source heat pumps A-D in combination with free cooling. Secondary, the cooling heat pumps E-F are used. The difference between primary and secondary system solution is small and the two can be seen as relatively equivalent. District heating is only used as a last resort during the winter. The energy source for the ground source heat pumps should vary between the Klarälven river and the ground storage with the intention of utilizing the capacity of the ground storage optimally. The spring and autumn case is largely equivalent to the winter case, with the exception that it contains more variations as a result of changes in surrounding conditions. During the summer, only district heating should be used to meet the heat demand. Free cooling and cooling machines 2-3 are used to meet the cooling needs. Free cooling is reserved for use during the times when the cooling demand is at its highest.The power fee for district heating accounts for 25.7% of the total operating cost in the optimal operating case. To reduce costs, it is therefore considered important to cut the power peaks for district heating. The study examines the possible benefits of connecting the free cooling heat exchanger to the Klarälven river with the intention of being able to use it more than what is currently the case. The system solution does not provide a significant reduction in operating costs when simulating one year of operation. It might however be advantageous to connect free cooling to the Klarälven river from the perspective of being able to adjust the net energy to the ground storage to prevent long-term temperature changes in the bedrock. Annual operating costs can be reduced by increasing the maximum capacity of the heat pumps. An increase in the capacity of the ground source heat pumps equivalent to one component reduces the total annual cost by 4.6%. An increase in the capacity of the cooling heat pumps equivalent to one component reduces the total annual cost by 1.5%. Increasing the maximum capacity for the other components does not result in a significant change in annual operating costs. Improvements of the study means basing the model on better input data and taking into account more details in the system. Further studies should focus on applying the results to verify them in reality andmake investment calculations regarding expansion of the capacity of the heat pumps
|
45 |
Dimensioning and control for heat pump systems using a combination of vertical and horizontal ground-coupled heat exchangers / Dimensionering och styrning för värmepumpssystem som använder en kombination av vertikala och horisontella markvärmekollektorerDenker, Richard January 2015 (has links)
A model has been developed which simulates a system consisting of a horizontal and vertical ground-coupled heat exchanger connected in parallel to the same heat pump. The model was used in computer simulations to investigate how the annual minimum and mean fluid temperatures at the heat pump varied as several parameters of the combined system were changed. A comparison was also made between different control settings for fluid flow rate distribution between the two exchangers. For the case when the flow rate distribution was not controlled, the effect of viscosity differences between a colder and warmer exchanger was investigated. The short term effects of letting the vertical heat source rest during the warm summer months was then tested. Lastly, the results of the model was compared to a simple 'rule of thumb' that have been used in the industry for this kind of combined system. The results show that using a combined system might not always result in increased performance, if the previously existing exchanger is a vertical ground-coupled heat exchanger. The effects of viscosity differences on the flow distribution seems to be negligible, especially for high net flows. Controlling the fluid flow rates seems to only be worth the effort if the the pipe lengths of the two combined exchangers differ heavily. Letting the vertical ground-coupled heat exchanger rest during summer was shown to in some cases yield an increased short-term performance in addition to the already known positive long term effects. The rule of thumb was shown to recommend smaller dimensions for combination systems than the more realistic analytical model.
|
46 |
Geoterminio šildymo ekonominis ir techninis įvertinimas / An economic and technical evaluation of geothermal heatingTamošaitis, Donatas 24 February 2011 (has links)
Žemės šilumos siurblių sistemos surenka žemės šilumą, dažniausiai vertikaliu U formos gręžinio šilumokaičiu. U formos gręžinio šilumokaičio našumas priklauso nuo šiluminių žemės savybių, taip pat nuo gręžinyje naudojamo skiedinio ar užpildo. Siekiant, kad Žemės šilumos siurblių sistemos pasiteisintų, projektuojant reikia atsižvelgti į geologinių struktūrų šiluminį laidumą ir gręžinio šilumokaičio šiluminę varžą. Šio darbo tikslas buvo nustatyti šilumos siurblio, naudojančio grunto šilumą, pritaikymo individualioje sodyboje siurblio techninis ir ekonominis įvertinimas. Nustatyta, kad investicijos projektui įgyvendinti, kai gyvenamajam pastatui šildyti ir buitiniam karštam vandeniui ruošti šildymo sezono metu šilumą gamina šilumos siurblys, naudojantis grunto šilumą, palyginti su tiesioginiu elektros naudojimu pastatui šildyti ir buitiniam karštam vandeniui ruošti, atsiperka per 6,3 metus. Šiluminės reakcijos testas padeda nustatyti šiluminį žemės laidumą (λ) gręžinio šilumokaičio įrengimo vietoje, bei efektyvią gręžinio šilumokaičio šiluminę varžą (Rb). Pagrindinis tikslas buvo suderinti gręžinio šilumokaitį su žemės sąlygomis, taip pat nustatyti gręžinio gylio poveikį (60 m: VB2; 90 m: VB3). / Ground source heat pump systems exchange heat with the ground, often through a vertical, U-tube, borehole heat exchanger. The performance of this U-tube borehole heat exchanger depends on the thermal properties of the ground formation, as well as grout or backfill in the borehole. The design and economic probability of ground source heat pump systems need the thermal conductivity of geological structure and thermal resistance of borehole heat exchanger. An economic and technical evaluation of the heat pump, which is using ground heat, in individual homestead. It was found that the investment for this project, when heat pump using ground heat is used to heat residential building and domestic hot water in heating season, compared with the use of direct electric heating of buildings and domestic hot water payback within 6.3 years. Thermal response test method allows the in-situ determination of the thermal conductivity (l) of the ground formation in the vicinity of a borehole heat exchanger, as well as the effective thermal resistance (Rb) of this latter. The main goal has been to determine same in-situ ground type of borehole heat exchanger, including the effect of borehole’s depths (60 m: VB2; 90 m: VB3).
|
47 |
Effects of ground-coupled heat pumps on hydrogeologic systems : Ball State University / Effects of ground coupled heat pumps on hydrogeologic systemsDunn, Marsha E. 20 July 2013 (has links)
In 2009 Ball State University began construction on the nation’s largest ground-source geothermal system in attempt to reduce its environmental impacts and heating/cooling expenses. Since late November 2011, half of the geothermal system has been operational. Due to only partial geothermal use and a warm winter in 2011, thermal increases can be seen throughout the Phase 1 fields. After system initiation in 2011, an average temperature increase of 4.33°C has been observed in the bottom 80-120+ meters in the middle of the South Field, while no increase was found in the southern-edge well of the North Field. To evaluate thermal increases, hydraulic characteristics were gathered including groundwater flow direction, hydraulic gradients and hydraulic conductivities. Varying temperatures throughout the area may affect the groundwater geochemistry. Geochemical results indicate a calcium-bicarbonate facies. / Geothermal well field construction -- Study site -- Methods -- Results -- Discussion. / Department of Geological Sciences
|
48 |
Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel / A method for estimating the annual performance of a predictive controller for ground source heat pumps on a semi-virtual test benchSalque, Tristan 15 October 2013 (has links)
Avec le développement récent de régulateurs innovants pour le bâtiment, il devient nécessaire de mettre au point une méthode de test qui soit à la fois rapide, reproductible et réaliste. La méthode développée dans cette thèse permet d'obtenir des performances annuelles de régulateurs de pompes à chaleurs (PAC) géothermiques en seulement quelques jours de test. Basé sur une technique d'émulation déjà utilisée pour des tests de PAC géothermiques et de systèmes solaires combinés, le test permet d'incorporer le régulateur et la PAC réels dans un environnement de simulation calibré par des mesures in-situ. Chaque jour de test correspond à un jour type de chaque mois. Le développement de la méthode consiste à déterminer la séquence de jours types optimale permettant une bonne estimation des performances. La méthode est ensuite testée expérimentalement sur le banc semi-virtuel pour comparer un régulateur prédictif à un régulateur conventionnel sur une saison de chauffage. Pour les besoins de la méthode, un régulateur prédictif de PAC géothermiques est développé. Ce régulateur utilise des réseaux de neurones pour la prévision des données météo et de la température ambiante. Un nouveau module pour la prévision des températures dans le plancher chauffant et les sondes géothermiques est proposé. Le régulateur prédictif est testé par simulation sur une saison de chauffage pour différents climats et types de maisons individuelles. En fonction de la référence, les économies d'énergie réalisées varient entre 6% et 15%. / With the recent development of innovative controllers for the building, there is a need to develop a testing method that is fast, reproducible and realistic. The method developed in this study aims to estimate the annual performance of ground source heat pump (GSHP) controllers in only a few days of test. Based on emulation techniques already used for GSHP and solar combined systems, the test immerses the controller and a real GSHP in a simulated environement that is calibrated with in-situ data. Each day of test represents a typical day of the month. The development of the method consists in determining the optimal typical days that ensure an accurate estimation of annual performance. The method is then experimentally tested on the semi-virtual test bench for the comparison of a predictive controller and a conventionnal controller over an entire heating season.To develop the method, a predictive controller for GSHP is elaborated. The controller is based on artificial neural networks used for the prediction of weather data and indoor temperature. A new module for the prediction of floor heating and boreholes fluid temperatures is also proposed. The predictive controller is tested by simulation over a heating season for various climates and types of single family house. According to the reference case, the energy savings vary between 6% and 15%.
|
49 |
Thermal Numerical Analysis of Vertical Heat Extraction Systems in LandfillsOnnen, Michael Thomas 01 June 2014 (has links)
An investigation was conducted to determine the response of landfills to the operation of a vertical ground source heat pump (i.e., heat extraction system, HES). Elevated landfill temperatures, reported various researchers, impact the engineering performance of landfill systems. A numerical model was developed to analyze the influence of vertical HES operation on landfills as a function of climate and operational conditions.
A 1-D model of the vertical profile of a landfill was developed to approximate fluid temperatures in the HES. A 2-D model was then analyzed over a 40 year time period using the approximate fluid temperatures to determine the heat flux applied by the HES and resulting landfill temperatures. Vertical HES configurations simulations consisted of 15 simulations varying 5 fluid velocities and 3 pipe sizes. Operational simulations consisted of 26 parametric evaluations of waste placement, waste height, waste filling rate, vertical landfill expansions, HES placement time, climate, and waste heating.
Vertical HES operation in a landfill environment was determined to have 3 phases: heat extraction phase, transitional phase, and ground source heat pump phase. During the heat extraction phase, the heat extraction rate ranged from 0 to 2550, 310 to 3080, and 0 to 530 W for the first year, peak year, and last year of HES operation, respectively. The maximum total heat energy extracted during the heat extraction phase ranged from 163,000 to 1,400,000 MJ. The maximum difference in baseline landfill temperatures and temperatures 0 m away from the HES ranged from 5.2 to 43.2°C. Climate was determined to be the most significant factor impacting the vertical HES.
Trends pertaining to performance of numerous variables (fluid velocity, pipe size, waste placement, waste height, waste filling rate, vertical landfill expansions, HES placement time, climate, and waste heating) were determined during this investigation. Increasing fluid velocity until turbulent flow was reached increased the heat extraction rate by the system. Once turbulent flow was reached, the increase in heat extraction rate with increasing fluid velocity was negligible. An increase in the heat extraction rate was caused by increasing pipe diameter. Wastes placed in warmer months caused an increase in the total heat energy extracted. Increasing waste height caused an increase in the peak heat extraction rate by 43 W/m waste height. Optimum heat extraction per 1 m of HES occurred for a 30 m waste height. Increasing the waste filling rate increased the total heat energy extracted. Heat extraction rates decreased as time between vertical landfill expansions increase. Total heat energy extracted over a 35 year period decreased by approximately 21,500 MJ/year for every year after the final cover was placed until HES operation began. For seasonal HES operation, the total heat energy obtained each year differs and the fourth year of operation yielded the most energy. Wet Climates with higher heat generating capacities yielded increased heat extraction rates. Maximum temperature differences in the landfill due to the HES increased by 16.6°C for every 1 W/m3 increase in peak heat generation rate. When a vertical HES was used for waste heating, up to a 13.7% increase in methane production was predicted.
Engineering considerations (spacing, financial impact, and effect on gas production) for implementing a vertical HES in a landfill were investigated. Spacing requirements between the wells were dependent on maximum temperature differences in the landfill. Spacing requirements of 12, 12, 16, and 22 m are recommended for waste heating, winter-only HES operation, maximum temperature differences in the landfill less than 17°C, and maximum temperature differences in the landfill greater than 17°C, respectively. A financial analysis was conducted on the cost of implementing a single vertical HES well. The energy extracted per cost ranged from 0.227 to 0.150 $/MJ for a 50.8 mm pipe with a 1.0 m/s fluid velocity and a 50.8 mm pipe with a 0.3 m/s fluid velocity, respectively. A vertical HES could potentially increase revenue from a typical landfill gas energy project by $577,000 per year.
|
50 |
Understanding Green Energy Technology : Learning Processes in the Development of the Ground Source Heat PumpGidén Hember, Amanda January 2020 (has links)
The aim of this thesis is to increase the understanding of small-scale green energy technology development. In the transition towards a fossil free energy system, heat pumps are a low emission heating alternative. Contrary to other types of new small-scale green energy technology such as solar cells and electric vehicles, heat pumps are established on the Swedish market, with more than half the share of single family buildings. This makes it possible to study an example of a mature technology, and that knowledge could be used in the development and deployment of other technologies with similar small-scale green characteristics. The type of heat pump technology studied is ground source heat pumps, and their development is explored from an economic and performance perspective, using the concept of learning. Learning tracks how a product develops for each doubling of units produced. The results show that the efficiency has increased by a learning rate of 2.8 %. When the effects of a low-temperature heating system is included, the learning rate is even higher, 5.8 %. The efficiency improvement is mainly due to new and more expensive components, which has resulted in a price increase. Even if the price slightly decreased until 2008, it has increased with 29 % since. Nevertheless, the ground source heat pump is profitable compared to several other heating technologies. The most important factors underpinning the development are regulations, competition among manufacturers and research.
|
Page generated in 0.0558 seconds