• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dimensionering av ett småskaligt säsongsvärmelager till uppvärmning av ett växthus / Designing of a small-scale seasonal thermal heat storage for heating a green house

Svensson, Daniel January 2016 (has links)
Detta examensarbete utreder om det är möjligt att värma upp en planerad växthusutbyggnad av en 1,5-plans villa i Skåre utanför Karlstad. Uppvärmningen av växthuset ska ske enbart med värme från ett säsongsvärmelager, i form av ett markvärmelager. Värmelagret ska värmas upp med hjälp av solfångare som placeras på husets tak. Växthuset värms upp genom vattenburen golvvärme. Växthuset ska värmas upp under vintern och ska klara av att hålla 5 °C med detta värmesystem. Uppdraget blir att dimensionera värmelagret efter det värmebehov växthuset har och den effekt golvvärmen kräver. Värmebehovet för växthuset simuleras i IDA ICE där även vilken effekt som krävs av golvvärmen simuleras fram. De temperaturer som vätskan i golvvärmen behöver hålla beräknas i programmet Phoenix från Uponor. Värmelagret simuleras i COMSOL Multiphysics. Innan värmelagret kan simuleras beräknas det lokala värmemotståndet mellan kollektorslangen och omgivande mark i lagret. Detta för att veta vilken temperatur som säsongsvärmelagret behöver hålla. Det lokala värmemotståndet beräknas enligt de metoder som presenteras i Markvärme – En handbok om termiska analyser del II. Värmeproduktionen av solfångare beräknas enligt Björn Karlsson formel. Resultatet blir att det krävs en värmeproduktion på 12 150 kWh av solfångare, 30 m2 solfångare, för att ladda värmelagret. Jorden i marken byts ut mot lera för att värmelagret ska klara av att hålla tillräckligt hög temperatur under vintern för att värma växthuset. Simuleringarna visar att det är två stycken lager som klarar hålla tillräckligt hög temperatur för att golvvärmen ska kunna ge den värmeeffekt som krävs. Säsongsvärmelagret klarar att värma växthuset under vintern med golvvärme. Systemet blir dock relativt dyrt, vilket gör att projektet är svårt att försvara rent ekonomiskt. / This thesis investigates whether it is possible to heat a greenhouse planned expansion of a 1.5-storey house in Skåre outside of Karlstad. The warming of the greenhouse will be made exclusively with the heat from the seasonal heat storage which is in the form of ground heat storage. The warming of the seasonal heat storage will be done using solar panels that will be placed on the roof. The greenhouse is heated by floor heating. The greenhouse will be heated during the winter and should be able to keep 5 °C with the heating system. The mission is to design the heat storage after the heating requirements that the greenhouse has and the design power the floor heating demands. The heat demand of the greenhouse is simulated in IDA ICE, where also the design power required by the floor heating is simulated. The water temperature in the floor heating is calculated in the program Phoenix from Uponor. The seasonal heat storage is simulated in COMSOL Multiphysics. Before the heat storage can be simulated, the local thermal resistance between the collector and the surrounding soil is calculated. This is to know what temperature the seasonal heat storage needs to keep. The local thermal resistance is calculated using the methods presented in Markvärme – En handbok om termiska analyser del II. The heat production of solar panels is calculated according to Björn Karlsson formula. The result is that the heat generated by the solar panels to the seasonal heat storage needs to be 12 150 kWh, this is the heat generated by 30 m2 of solar panels. The soil in the ground needs to be replaced with clay in order to get the seasonal heat storage sufficient enough to be able to keep high enough temperatures during the winter to heat the greenhouse. The simulations show that there are two heat storages sufficient enough to maintain temperatures for the underfloor heating to be able to provide the heat output required. The seasonal heat storage is capable to heat the greenhouse during the winter with floor heating. The system is relatively expensive, which means that the project is difficult to justify in economic terms.
2

Framställning av dränerande bärlager från bergtäkt

Abu Sulaiman, Iyad, Ibrahim, Miran January 2023 (has links)
Bearing layers are used in road and building constructions as underlying soil layers to provide stability and support to the top layer that takes up the load. A normal bearing layer contains different amounts of materials such as stone, gravel, and filler. That mixture of materials contains a large amount of filler to give the product tightness and stability. Draining bearing layers usually contain less filler than ordinary bearing layers, because their purpose is to improve the drainage properties and reduce the risk of damage due to water collection.This thesis work took place at NCC's quarries in Sälgsjö and Hammarby. At NCC's rock quarry, there already is a standard bearing layer with a grain size of 0/32 and a filler content of approximately 4–5%. In this degree project, a production process has been created to obtain a drain bearing layer where the filler content is reduced to approximately 2–3%. The requirement for a draining carrier layer is 2–3% filler content and this requirement has been followed in this production process. The draining bearing layer has been produced based on a standard product with the same grain size.There are practical limitations in how the operations work and what capabilities are required. Moisture in the material has also been a limitation. In this project, work is done with freshly crushed material, which has a relatively low moisture content (1–2%). A vibration-free screen like the function of the harp has been designed and built. Then the standard product was run through the harp at different gradients and the new product was analyzed in the lab to see what filler content was achieved. A simulation test was performed using a FEM design program called Digiroad at Chalmers University of Technology in Gothenburg.The results demonstrate that the utilization of the developed models of harp screens reduces the proportion of filler in the material. Additionally, the conducted harp screen analyses confirm that the designed harp screens are effective in transforming a standard bearing layer into a draining bearing layer, which helps to prevent water accumulation under roads or buildings and thus reduces the risk of damage and problems. The efficient production process for producing draining bearing layers can be of great importance to ensure a sustainable and safe infrastructure.
3

Ekonomisk driftoptimering av det termiska energisystemet på Karlstad centralsjukhus : Framtida driftrekommendationer baserat på linjärprogrammering / Economic operational optimization of the thermal energy system at Karlstad central hospital : Future operation recommendations based on linear programming

Mellander, Petter January 2022 (has links)
Studien använder linjärprogrammering för att optimera driften av det termiska energisystemet på Karlstad centralsjukhus ur ett ekonomiskt perspektiv. Bakgrunden till studien är de höga elpriser som rådde under slutet av 2021 samt att det i dagsläget finns kunskapsluckor angående hur systemet bör köras optimalt. Studien baseras på driftdata från 2021. Energisystemet som optimeras är uppbyggt av kylvärmepumpar, bergvärmepumpar, kylmaskiner, frikyla, fjärrvärme och marklager. Ett förhållande för hur många kWh termisk energi som produceras per tillförd kWh el tas fram för samtliga komponenter, vilket sedan används för att modellera energisystemet. Optimering av systemet ger vilka komponenter som skall användas vid olika tidpunkter för att uppfylla ett bestämt värmebehov och kylbehov. Resultatet i form av optimal drift under 2021 analyseras och används för att ta fram driftrekommendationer för energisystemet i framtiden. En metod för att teoretiskt begränsa marklagrets kapacitet vid optimering presenteras. Metodenanvänder nettoenergi till marklagret över en specifik tidsperiod för att approximera temperaturen på brinevätskan ut ur marklagret. Genom att sätta temperaturbegränsningar på brinevätskan kan därigenom nettoenergin till marklagret begränsas. Baserat på data från 2021 tillåts nettoenergin till marklagretvariera mellan -14 700 kWh och 12 500 kWh per 24 timmar. Resultaten visar att det under vintern är fördelaktigt att primärt använda bergvärmepumparna A-D i kombination med frikyla. Sekundärt används kylvärmepumparna E-F. Skillnaden mellan primär och sekundär systemlösning är liten och de båda kan ses som relativt likvärdiga. Fjärrvärme används enbart som sista alternativ under vintern. Energikällan för bergvärmepumparna bör variera mellan Klarälven och marklager med avsikt att utnyttja marklagrets kapacitet optimalt. Vår och höst fallet är till stora delar likvärdigt med vinterfallet med undantaget att det innehåller fler variationer till följd av förändringar i omgivande förutsättningar. Under sommaren bör enbart fjärrvärme användas för att tillgodose värmebehovet. Frikyla och kylmaskinerna 2-3 används för att tillgodose kylbehovet. Frikyla reserveras till att användas under de tidpunkter då kylbehovet är som högst. Effektavgiften för fjärrvärme står för 25,7 % av total driftkostnad i optimalt driftfall. För att minska kostnaderna anses det därför viktigt att kapa effekttopparna för fjärrvärme. Studien undersöker eventuella fördelar med att koppla frikyle-värmeväxlaren mot Klarälven med avsikt att kunna utnyttja den mer än vad som görs i dagsläget. Systemlösningen ger ingen signifikant minskning av driftkostnader vid simulering av ett års drift. Det kan dock vara fördelaktigt att koppla frikyla mot Klarälven ur perspektivet att kunna justera nettoenergin till marklagret för att förhindra långsiktiga temperaturförändringar i berggrunden. Årlig driftkostnad kan minskas genom att öka maxkapaciteten för värmepumparna. En ökning avbergvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 4,6 %. En ökning av kylvärmepumparnas kapacitet motsvarande en komponent minskar total årlig kostnad med 1,5 %. Att öka maxkapaciteten för övriga komponenter ger ingen signifikant förändring av årlig driftkostnad. Förbättring av studien innebär att basera modellen på bättre indata samt ta hänsyn till fler detaljer i systemet. Vidare studier bör fokusera på att tillämpa resultaten för att verifiera dem i verkligheten samt göra investeringskalkyler över att utöka kapaciteten för värmepumparna. / The study uses linear programming to optimize the operation of the thermal energy system at Karlstad Central Hospital from an economic perspective. The background to the study is the high electricity prices that occurred at the end of 2021 and the fact that there are currently knowledge gaps regarding how the system should be run optimally. The study is based on operational data from 2021. The energy system that is optimized is made up of cooling heat pumps, ground source heat pumps, cooling machines, free cooling, district heating and ground storage. A ratio for how many kWh of thermal energy that is produced per kWh of supplied electricity was produced for all components, which was then used to model the energy system. Optimization of the system provides which components are to be used at different times to meet a specific heating and cooling demand. The result in the form of optimal operation during 2021 is analyzed and used to produce operating recommendations for the energy system in the future. A method for theoretically limiting the capacity of the ground storage during optimization is presented. The method uses net energy to the ground storage over a specific period of time to approximate the temperature of the brine liquid out of the ground storage. By setting temperature limits on the brine liquid, the net energy to the ground storage can thereby be limited. Based on data from 2021, the net energy to the ground storage is allowed to vary between -14 700 kWh and 12 500 kWh per 24 hours. The results show that during the winter it is advantageous to primarily use the ground source heat pumps A-D in combination with free cooling. Secondary, the cooling heat pumps E-F are used. The difference between primary and secondary system solution is small and the two can be seen as relatively equivalent. District heating is only used as a last resort during the winter. The energy source for the ground source heat pumps should vary between the Klarälven river and the ground storage with the intention of utilizing the capacity of the ground storage optimally. The spring and autumn case is largely equivalent to the winter case, with the exception that it contains more variations as a result of changes in surrounding conditions. During the summer, only district heating should be used to meet the heat demand. Free cooling and cooling machines 2-3 are used to meet the cooling needs. Free cooling is reserved for use during the times when the cooling demand is at its highest.The power fee for district heating accounts for 25.7% of the total operating cost in the optimal operating case. To reduce costs, it is therefore considered important to cut the power peaks for district heating. The study examines the possible benefits of connecting the free cooling heat exchanger to the Klarälven river with the intention of being able to use it more than what is currently the case. The system solution does not provide a significant reduction in operating costs when simulating one year of operation. It might however be advantageous to connect free cooling to the Klarälven river from the perspective of being able to adjust the net energy to the ground storage to prevent long-term temperature changes in the bedrock. Annual operating costs can be reduced by increasing the maximum capacity of the heat pumps. An increase in the capacity of the ground source heat pumps equivalent to one component reduces the total annual cost by 4.6%. An increase in the capacity of the cooling heat pumps equivalent to one component reduces the total annual cost by 1.5%. Increasing the maximum capacity for the other components does not result in a significant change in annual operating costs. Improvements of the study means basing the model on better input data and taking into account more details in the system. Further studies should focus on applying the results to verify them in reality andmake investment calculations regarding expansion of the capacity of the heat pumps

Page generated in 0.0373 seconds