• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Evaluation of The Performance and Comparative Cost of Ground-mounted and Rooftop Mounted Solar Photovoltaic Systems

Leighton, Michael 04 February 2021 (has links)
In South Africa, there is an increasing interest in installing rooftop mounted solar photovoltaic systems. However, financing the photovoltaic systems causes most interest to be abandoned, largely due to the cost required to replace a building's asbestos roof. An alternative solution to replacing an asbestos roof is to install a ground-mounted photovoltaic system, which is more costly compared to a rooftop mounted system. This study aims to determine if a ground-mounted or a rooftop mounted solar photovoltaic system is the most financially feasible solar photovoltaic configuration. In this study three photovoltaic systems were analysed, all of which are installed in Atlantis, Western Cape (WC). Since all three systems are in the same area, they are all exposed to the same metrological conditions, allowing for identical energy generation potential. Two of the photovoltaic systems are ground-mounted systems located respectfully at the South African Renewable Energy Incubator (SAREBI) and at Stripform Packaging. The third system is a rooftop mounted system located at SA Tyre Recyclers. The photovoltaic system at SAREBI is a 9.75 kWp system consisting of 30 Canadian Solar CS6U-325P modules, one Schneider Electric 20 kW inverter, a tilt angle of 15° and an azimuth angle of -19°. The photovoltaic system at SA Tyre Recyclers is a 231 kWp system consisting of 700 JA Solar JAP72S-01-330-SC modules, 7 SolarEdge 27.6 kW inverters, a tilt angle of 13° and an azimuth angle of 22°. The photovoltaic system at Stripform Packaging is a 20.1 kWp system consisting of 60 Canadian Solar CS6U-335P modules, one SMA 20 kW inverter, a tilt angle of 15° and an azimuth angle of 46°. To achieve the aim of this study, the performance of each of the solar photovoltaic systems was examined, by comparing their annual specific yield. After which the technical aspects and differences of each of the photovoltaic systems were explored, to illustrate how each of the systems differ technically and how each system can be improved. Finally, the comparative cost of each of the solar photovoltaic systems was examined by analysing the levelized cost of energy (LCOE) and the payback period for each of the photovoltaic systems. The results demonstrated that from an annual specific yield perspective, the ground-mounted configuration was the best performing, whilst from a financial perspective, the rooftop mounted configuration had the lowest levelized cost of energy (LCOE) and payback period. However, installing a ground-mounted system is more financially feasible than replacing an asbestos roof and then installing a rooftop mounted system. In conclusion, by fully understanding the performance, payback period and levelized cost of energy, a clear understanding of potential risk can be determined, thus making the installation of photovoltaic systems more appealing for financiers. It is recommended that this study be repeated in a manner in which each of the photovoltaic system configurations are constructed consisting of all the same photovoltaic components, measuring equipment, tilt and azimuth angles. All of which would result in two identical photovoltaic systems where one is installed on a rooftop and the other installed on the ground. Once the two photovoltaic system configurations are equal in all aspects, an accurate comparison to determine which configuration is the most optimal performer and which is the most financially viable will be possible.
2

Modelling and Assessment of Biomass-PV Tradeoff within the Framework of the Food-Energy-Water Nexus

Bao, Keyu 03 May 2023 (has links)
Food, water and energy are three essential resources for human well-being, poverty reduction and sustainable development. These resources are very much linked to one another, meaning that the actions in any one particular area often can have effects in one or both of the other areas. At the same time, an economy's shift towards climate neutrality requires a massive expansion of energy production from renewable sources. Among these ground-mounted photovoltaic (PV) and biomass will be expanded massively to meet the clean energy generation goal, simultaneously influence regional water and food availability and supply security. It is crucial to understand Food-Water-Energy Nexus (FWE) nexus during the energy transition. However, current studies have limitation both methodically (qualitative assessments) and spatially (aggregated data on a national level is more available). Firstly, a consistent share input data set in geographical format was created with the resolution of building/field. An energy simulation platform (SimStadt) was then extended with new workflows on biomass potential, ground-mounted PV potential, food demand/potential, and urban water demand. Combining with existing workflows on urban building heating/electricity demand and roof PV potential, the dissertation created a complete simulation environmental covering most-relating FWE topics in energy transition with consistent input and output structures at a fine resolution. Secondly, the most representative inter-linkage between ground-mounted PV and biomass on hinterland is investigated in details with the new tools. The output data of each field from ground-mounted PV and biomass workflows are linked and ranked according to the scenarios emphasizing PV yield, feasibility, profit, or biomass. The assessment and scenarios are applied at three representative German counties with distinguished land-use structures and geometries as case studies. Results show that current policies does not guarantee the technically efficient allocation of fields. The optimal technical strategy is to follow the individual market profit drive, which is very likely, at the same time for the social good, to achieve high PV yields with limited biomass losses and more significant crop water-saving effects. The local food, water, and energy demands are also included as a metric for resource allocation on the potential side. Besides focusing on the biomass-PV tradeoff simulation and analysis, pioneer works have also been done to test the transferability of the method in cases outside Germany, and the complement of urban solid waste to agricultural biomass is explored to achieve energy autarky.
3

Monteringshöjd och markinterferens i nordliga solkraftsparker : Minskade skuggningseffekter från ansamling av snö i markmonterade solcellsanläggningar i norra Sverige.

Edebo, Gabriella January 2023 (has links)
Markmonterade solcellsanläggningar i norra Sverige behöver ta hänsyn till förekomsten av snö och risken för markinterferens, vilket innebär att snömängden i framkant av panelerna gör att den snö som ackumuleras ovanpå inte kan glida av. Följden blir skuggning av panelerna som därmed får nedsatt eller helt utebliven elproduktion. Syftet med arbetet var att besvara frågeställningar kring vilken montagehöjd som krävs för att undvika problemet samt om den ökade engångskostnaden kompenseras av potentialen till ökad produktion under vintermånaderna. Metoden bestod främst av att jämföra produktionsdata från en solpark i Östersund med värden för solinstrålning och snödjup från SMHI för att avgöra vilken effekt snöskuggning haft på produktionen och hur utfallet skulle ha sett ut vid olika monteringshöjder av anläggningen. Resultaten visar att det finns stor potential till goda produktionsvärden under vårvintern, förutsatt att markinterferens inte finns närvarande. Anledningen beror troligtvis på högt albedo från snötäckt mark och lägre lufttemperaturer vilket har en positiv inverkan på modulernas verkningsgrad. En beräkningsmodell utvecklades för att uppskatta en lämplig monteringshöjd för en solpark utifrån dess tänkta utformning och det förväntade snödjupet på platsen. Förhoppningen är att modellen kan bidra till ökad kunskap för att främja utbyggnad av markmonterade solcellsanläggningar även på nordliga breddgrader. Lönsamheten för ett högre montage undersöktes genom en jämförelse mellan ett prisexempel från en uppförd solpark och ett uppskattat produktionsbortfall från solparken i Östersund vid en teoretiskt lägre monteringshöjd. Det visade att en höjning av Östersundsparken från 50 till 90 centimeter skulle betala av sig enbart genom tillskottet i produktion under perioden februari till april de tre första vintrarna. / Ground-mounted PV installations in northern Sweden need to consider the presence of snow and the risk of ground interference, meaning that the buildup of snow in front of the panels prevents the snow accumulated on top from sliding off. The result is shading of the panels, which in turn reduces or eliminates the electricity production. The purpose of this work was to answer questions regarding the mounting height required to avoid this problem and whether the increased one-time cost for higher mounting is compensated for by the enhanced production during winter months. The method consisted mainly of comparing production data from a solar park in Östersund to solar radiation values and snow depth from SMHI to determine the effect of snow shading on production and the outcome at different installation heights of the plant. The results showed that there is great potential for valuable energy production during the late winter season, provided that ground interference is not present. This is probably due to high albedo from snow-covered ground and lower air temperatures resulting in a positive impact on the efficiency of the modules. A computational model was developed to estimate a suitable mounting height for a solar park based on the intended design and expected snow depth at the site. The intention is that the model can contribute to increased knowledge to promote the deployment of ground-mounted PV systems in northern latitudes. The profitability of higher mounting was investigated by comparing a price example from an existing solar facility and an estimated production loss from the solar park in Östersund at a theoretical lower mounting height. It showed that  increasing the height of the Östersund site from 50 to 90 centimeters in front would pay off solely on the enhanced production during the period February to April of the first three winters.

Page generated in 0.0382 seconds