Spelling suggestions: "subject:"groundwater recharge"" "subject:"groundwater decharge""
71 |
Klimatförändringarnas påverkan pågrundvattnet : En effektstudie över den framtida grundvattensituationen iHedesundaåsen, med fokus på vattenkvantitetWallberg, Ellinor, Nyberg, Erik January 2019 (has links)
Klimatförändringarna kan komma att påverka den hydrologiska cykeln på en global skala. Förändringarna kommer tydligast att märkas på ytan, med ökande neder-bördsmängder, en ökad avdunstning och ett minskat snötäcke. Det som sker vid ytan har dock en stor inverkan på vad som sker med grundvattnet och varierar i hög grad mellan magasin, rådande klimat och markanvändning. Den Europeiska miljöby-rån har därför eftersökt att framtida grundvattenförhållanden undersöks på lokala ni-våer. Hedesundaåsen valdes till denna studie på grund av att dess vattenmagasin an-vänds som dricksvattentäkt, utan mänsklig modifiering på dess tillrinning. Inga lik-nande studier har tidigare utförts på Hedesundaåsen. Den är en rullstensås i Gävle-borgs län som förser befolkningen i Hedesunda med dricksvatten. Syftet med detta arbete har varit att presentera en bild över hur grundvattnet i Hedesundaåsen kan komma att påverkas i ett framtida klimat. Den hydrologiska modellen HBV-light kalibrerades för tidsperioden 2000-2009 med hjälp av meteorologiska mätvärden från SMHI, och validerades mot tidsperioden 2011-2017. Simuleringar utfördes för tidsperioderna 2022-2050 samt 2072-2100. I simuleringarna användes två vitt skilda framtidsscenarier för att täcka in en stor bredd över framtida möjliga scenarier. Simuleringarna i studien visade genomgående på trender med ökande grundvattennivåer och -bildning oavsett scenario. Beroende på valt scenario kan grundvattennivån enligt simuleringarna komma att öka med mellan 6,3–11,5 % och grundvattenbildningen med mellan 4,8–13,6 % för tidspe-rioden 2072-2100 jämfört med tidsperioden 1988-2017. En liknande studie som ti-digare genomfördes i ett närliggande område visade på en ökning av grundvatten-bildning med upp till 15 % i slutet av seklet. En jämförelse av resultaten mellan stu-dierna gör det troligt att resultaten från Hedesundaåsen mycket väl kan vara kor-rekta. Det står klart efter denna studie att klimatförändringarna kommer att påverka grundvattnet i Hedesunda i framtiden. Osäkerheterna om detaljerna är dock många, då de framtida scenarierna endast är en uppskattning över hur nederbörd, tempera-tur etc. kommer att påverkas i ett framtida klimat. Osäkerheten byggs på av att dessa faktorer används som en prognos i en hydrologisk modell som också innehåller osäkerheter från den matematiska modellen och framtidsscenarierna. Trots de många osäkerheterna kan simuleringarna ge en indikation över hur klimatföränd-ringarna kan komma att påverka grundvattnet i framtiden, och de kan användas för att förbereda samhället för möjliga framtida konsekvenser av grundvattnets föränd-rade kvantitet och i förlängningen även vattenkvaliteten. / Climate change may affect the hydrological cycle on a global scale. The changes will most clearly be noticed on the surface, with increasing precipitation amounts, in-creased evaporation and a reduced snow cover. What happens at the surface has a great impact on what happens to the groundwater, and varies greatly between the different water storages, the prevailing climate and land use. The European Environ-ment Agency has therefore sought to investigate future groundwater conditions at local levels. The Hedesunda esker was chosen for this study because it is used as a water source without human modification of its inflow. No similar studies have pre-viously been performed on the Hedesunda esker. It is an esker in Gävleborg County, which supplies drinking water to the population in Hedesunda. The purpose of this study has been to present how the groundwater in the Hedesunda esker may be af-fected in a future climate. The hydrological model HBV-light was calibrated for the time period 2000-2009 us-ing meteorological measurements from SMHI, and validated against the time period 2011-2017. Simulations were performed for the time periods 2022-2050 and 2072-2100. In the simulations, two widely different future scenarios were used to cover a large range of possible future scenarios. The simulations in the study consistently showed trends with increasing groundwater levels and recharge, regardless of the scenario. Depending on the chosen scenario, the groundwater level according to the simulations may increase by between 6.3–11.5 % and the groundwater recharge by between 4.8–13.6 % for the period 2072-2100. A similar study, previously con-ducted in a nearby area, showed an increase in groundwater recharge by up to 15 % at the end of the century. A comparison of the results between the studies makes it likely that the results from the Hedesunda esker may well be correct. It is clear after this study that climate change will affect the groundwater in Hede-sunda in the future. The uncertainties about the details are many, as the future sce-narios are only an estimate of how precipitation, temperature etc. will be affected in a future climate. The uncertainty is based on the fact that these factors are used as a forecast in a hydrological model, which also contains uncertainties from the mathe-matical model and the future scenarios. Despite the many uncertainties, the simula-tions can give an indication of how climate change may affect the groundwater in the future, and can be used to prepare society for possible future consequences of the groundwater's changed quantity and, in the long run, also the water quality.
|
72 |
Avaliação do impacto da substituição de pastagem por eucalipto na recarga de aquífero freático / Impact evaluation of pasture replacement by eucalyptus in groundwater aquifer rechargeMattos, Tiago Souza 14 May 2015 (has links)
As plantações florestais, historicamente, estão associada a intensos debates sobre o seu impacto na dinâmica da água do solo ou subterrânea. Nesse contexto, este trabalho buscou avaliar os possíveis impactos da mudança de cobertura do solo, de pastagem para eucalipto, sobre o aquífero freático em zona de afloramento do Sistema Aquífero Guarani. A área de pesquisa está localizada na bacia do Ribeirão da Onça, situada no município de Brotas, no centro-leste do Estado de São Paulo. Essa é monitorada desde 2004. Foram utilizados dois métodos para avaliar o impacto da mudança de uso do solo, o método iWTF e o método de Darcy. A partir desses métodos, estimou-se as taxas de recarga subterrânea, fluxo lateral, variação de armazenamento e percolação profunda. Além disso foram obtidas a variação do nível freático, espessura saturada e gradiente hidráulico horizontal para o aquífero na área de estudo. Durante os anos hidrológicos de 2005 a 2011, a recarga direta variou de 255 e 876 mm (iWTF), equivalente a 21% e 51% da precipitação anual correspondente. Após 2011, com a mudança de cobertura do solo de pastagem para eucalipto, não obstante os anos hidrológicos de 2012 e 2013 apresentarem precipitação próxima da média de longo período, a recarga direta foi estimada em cerca de 210 mm (2012) e 147 mm (2013), equivalentes a 13% e 10% da precipitação anual. A diminuição na recarga direta levou à redução da espessura saturada, variação do nível freático, gradiente hidráulico horizontal, fluxo lateral e armazenamento anual. Além disso, pode-se perceber que a plantação florestal está exercendo influência sobre a área de pastagem adjacente à plantação. Tem-se observado essa influência através da existência de fluxo transversal em direção à plantação florestal, o qual tem elevado o armazenamento no período de estiagem. Os resultados indicam que a plantação de eucalipto afetou significativamente o comportamento sazonal e anual do balanço hídrico na área de estudo. / Historically forest plantations are associated with intense debate about its impact on soil water dynamics or groundwater. Thus, the objective of this study was to evaluate the potential impacts of land cover change of pasture to eucalyptus on the groundwater in an outcrop zone of the Guarani Aquifer System. The study area is located in the Ribeirão da Onça watershed, located in the municipality of Brotas, in the center-east of the state of São Paulo. To assess the impact of land cover change, I used two methods: i. iWTF and ii. Darcy. From these methods, we estimated groundwater recharge rates, lateral flow, water storage variation and deep percolation. Furthermore, I obtained the water table variation, saturated thickness and horizontal hydraulic gradient into the aquifer in the study area. During the hydrological years 2005-2011, the direct recharge through the results of iWTF method varied between 256 and 876 mm, equivalent to 21% and 51% of the corresponding annual precipitation. After 2011, with the land cover change of pasture to eucalyptus, the direct recharge was computed at about 210 mm (2012) and 147 mm (2013), equivalent to 13% and 10% of the annual precipitation. I did not find significant difference in the annual precipitation in these years compared to the historical mean. Therefore, my findings have shown that the decrease of direct recharge are associated to the land cover change of pasture to eucalypts. The decrease in direct recharge leads to the reduction of saturated thickness, the water level variation, horizontal hydraulic gradient, lateral flow and annual storage. Moreover, it can be seen that the forest plantation has influenced the pasture area, adjacent to the plantation. It has been observed that influence through the existence of cross flow toward the forest plantation, which has high storage, especially in the dry season. The results indicate that the eucalyptus plantation significantly affected the seasonal and annual behavior of the water balance in the study area.
|
73 |
The vulnerability of low-arsenic aquifers in Bangladesh: a multi-scale geochemical and hydrologic approachMihajlov, Ivan January 2014 (has links)
The worldwide natural occurrence of high levels of arsenic (As) in groundwater and its deleterious effects on human health have inspired a great amount of related research in public health and geosciences internationally. With >100 million people in South and Southeast Asia exposed to >10 µg/L As in shallow groundwater that they use for drinking, the installation of deeper, low-As wells has emerged as a major strategy for lowering the exposure. As the magnitude of deep pumping continues to increase, this work focuses on the geochemical and hydrologic questions surrounding the vulnerability and sustainability of low-As aquifers in Bangladesh, the country most affected by As crisis. In an effort to better understand the residence time of groundwater in low-As aquifers at depth, radiocarbon (14C) and 13C in dissolved inorganic carbon, tritium (3H), stable isotopes of hydrogen (2H) and oxygen (18O), and noble gas concentrations were measured across a ~25 km2 area of Araihazar, ~30 km east of Dhaka. Groundwater from >120 m depth is shown to be ~10,000 years old and its isotopic signatures indicate that recharge occurred at the time of changing climate from the late Pleistocene to early Holocene, with little recharge occurring since. In contrast, the intermediate depth low-As aquifers (<120 m) have a heterogeneous distribution of groundwater chemistry and ages, and contain groundwater recharged <60 years ago in certain locations. In one such area surrounding a small village, the effects that subsurface clay layer distribution has on recharge patterns and redox status of the intermediate aquifer was investigated. The relevant hydrogeologic and geochemical processes that led to documented failures of a community well at the site were assessed using a combination of solid and water phase geochemistry with tritium-helium (3H/3He) dating, hydraulic head monitoring, and pumping tests. Organic matter seeping from a compressible clay layer, which is subject to a pumping-induced, downward hydraulic gradient, reduces iron oxides and helps release As in the grey, upper part of the intermediate aquifer. No recent recharge was detected by 3H measurements in the upper, grey sand layer, however a layer of orange sand beneath it contains groundwater that was recharged 10-60 years ago. This groundwater laterally bypasses the confining clay layer to recharge the middle of the aquifer and contains dissolved As levels of <10 µg/L. In this particular case, the pore water that leaches from clay layers contributes to As contamination, whereas the lateral recharge with shallow groundwater coincides with the low-As depth. Thus, clay layers may not always protect the low-As aquifers from As contamination, even if they can block direct vertical recharge with shallow groundwater enriched in As and organics. Finally, the adsorption of As to aquifer sediments, as a natural mechanism of the low-As aquifer defense against contamination, was assessed in the field via a column study. The column experiments were conducted by pumping shallow, high-As groundwater through freshly collected sediment cores to quantify the retardation of As transport through the aquifer. This study demonstrated an elegant method of assessing contaminant transport under nearly in situ conditions that resulted in sorption estimates similar to those made by field studies using more challenging methods or located at hard-to-find sites with convenient flow patterns. My work, therefore, contributed to a better understanding of low-As aquifers in Bangladesh from the perspectives of both the groundwater flow and water-sediment interactions on various scales, and it integrated methods that can be employed elsewhere to characterize aquifers and study contaminant transport.
|
74 |
Groundwater vulnerability in Vietnam and innovative solutions for sustainable exploitation / Sự thương tổn nước ngầm ở Việt Nam và giải pháp mới để khai thác bền vữngStefan, Catalin 25 August 2015 (has links) (PDF)
With an abundant average precipitation rate, Vietnam could be considered water-reach country. Unfortunately, the non-uniform spatial and temporal distribution of rainfall, coupled with a demographic and industrial development polarized on the two major river deltas, it makes the water resources extremely vulnerable. As consequence, severe depletions of groundwater table are reported all over the country, often in the range of 1-2 m per year and more. The subsequent land subsidence is just one of the drawbacks, another being the increasing salinity of coastal aquifers as sea water level continues to rise. Under these conditions, the natural groundwater replenishment alone is not anymore able to provide for a safe water supply, different studies indicating that the groundwater exploitation in major urban agglomerations like Hanoi or Ho Chi Minh City already passed the sustainability level. The solution presented in this paper implies making use of engineered methods for enhancing the natural groundwater recharge rates by enabling better percolation rates of surface water into subsurface and thus optimizing the regional water cycle. The method known as ‘managed aquifer recharge’ (MAR) is introduced, together with general guidelines and tools for planning of MAR schemes, such as the newly web-based decision support system INOWAS_DSS. / Với tốc độ lượng mưa trung bình dồi dào, Việt Nam có thể được coi là quốc gia có nguồn nước trong tầm tay. Thật không may, sự phân bố không gian và thời gian không đồng đều của lượng mưa, cùng với sự phát triển dân số và công nghiệp phân cực trên hai vùng châu thổ sông lớn làm cho các nguồn nước rất dễ bị tổn thương. Vì vậy, sự suy giảm nước ngầm nghiêm trọng được báo cáo trên khắp đất nước, thường mỗi năm giảm 1-2 m và nhiều hơn nữa. Hiện tượng sụt lún đất xảy ra sau đó chỉ là một trong những hạn chế, mặt khác là độ mặn ngày càng tăng của các tầng chứa nước ven biển do mực nước biển tiếp tục tăng. Dưới những điều kiện này, việc bổ sung nước ngầm tự nhiên đơn thuần không còn có thể cung ứng cho một nguồn cấp nước sạch an toàn. Các nghiên cứu khác nhau cho thấy rằng việc khai thác nước ngầm tại các đô thị lớn như Hà Nội hay thành phố Hồ Chí Minh đã vượt qua mức độ bền vững. Giải pháp được trình bày trong bài báo này gợi ý việc sử dụng các phương pháp thiết kế để nâng cao tỷ lệ tái nạp nước ngầm tự nhiên bằng cách cho phép tỷ lệ thẩm thấu tốt hơn nước mặt vào dưới bề mặt và do đó tối ưu hóa chu trình nước trong khu vực. Phương pháp được gọi là 'tái nạp nước ngầm có quản lý (MAR) được giới thiệu, cùng với các hướng dẫn chung và các công cụ để lập kế hoạch đề án MAR, ví dụ như hệ thống mớihỗ trợ quyết định dựa trên kết nối mạng INOWAS_DSS.
|
75 |
Groundwater recharge modelling: linkage to aquifers and implications for water resources management and policyAssefa, Kibreab January 2013 (has links)
The main goal of this research is to develop and test a groundwater recharge estimation method that can address some of the key research priorities in groundwater. In this context use is made of various modelling tools including ArcGIS, field data (in situ observations of soil temperature and soil moisture), and soil physics as represented by a physically based vadose zone hydrologic model (HYDRUS-1D). The research is conducted in a pilot watershed in north Okanagan, Canada.
The public version of HYDUS-1D and another version with detailed freezing and thawing module are first used to investigate seasonal distribution of heat and water movement in the vadose zone. Model performance is evaluated in different scales by using field data, the gradient-based optimization algorithm of HYDRUS-1D, and ROSETTA derived prior information about soil hydraulic parameters. The latter are fitted to statistical distributions and used in Monte-Carlo experiments to assess the potential uncertainty in groundwater recharge due to model parameters. Next, the significance of the recharge estimation method for catchment scale transient groundwater modelling is demonstrated by applying uniform and variable flux boundary condition to a saturated zone transient groundwater model, MIKESHE. The results showed that the traditional uniform recharge assumption can lead to misleading decisions related to water resources management and pumping well network design.
The effect of pumping well network and the provincial Water Act on water resources sustainability are further examined in an evolving climate. The results suggest potential water resource problem in the basin, which can possibly be attributed to the previously installed pumping well network (depth and screen level), and the provincial water use policy. The findings of this study demonstrate that such problems related to inappropriate well network and water resource management can greatly be minimised with the use of the recharge estimation method developed in this study.
|
76 |
Recognizing groundwater as a site development limitation factorDavis, James Rodrick January 1984 (has links)
This study observes how the size and type of land development can often be limited by the supply of fresh groundwater sources. Multiple-use recharge basins were found to be effective in diverting pollutants around a potable source of groundwater, thus reducing the chances of that source becoming contaminated. A computer-aided numerical model was used to simulate groundwater flow and its responses to recharge basins in a hypothetical situation.Through a series of trials, artifical recharge was able to abate the problem of groundwater contamination in certain geohydrologic conditions. Optimum rates of recharge and discharge were determined to effectively divert contaminated groundwater around several types of developments. From these findings, land use options and development intensities can be safely recommended for areas which otherwise may have been nearly undevelopable. / Department of Landscape Architecture
|
77 |
Groundwater recharge modelling: linkage to aquifers and implications for water resources management and policyAssefa, Kibreab January 2013 (has links)
The main goal of this research is to develop and test a groundwater recharge estimation method that can address some of the key research priorities in groundwater. In this context use is made of various modelling tools including ArcGIS, field data (in situ observations of soil temperature and soil moisture), and soil physics as represented by a physically based vadose zone hydrologic model (HYDRUS-1D). The research is conducted in a pilot watershed in north Okanagan, Canada.
The public version of HYDUS-1D and another version with detailed freezing and thawing module are first used to investigate seasonal distribution of heat and water movement in the vadose zone. Model performance is evaluated in different scales by using field data, the gradient-based optimization algorithm of HYDRUS-1D, and ROSETTA derived prior information about soil hydraulic parameters. The latter are fitted to statistical distributions and used in Monte-Carlo experiments to assess the potential uncertainty in groundwater recharge due to model parameters. Next, the significance of the recharge estimation method for catchment scale transient groundwater modelling is demonstrated by applying uniform and variable flux boundary condition to a saturated zone transient groundwater model, MIKESHE. The results showed that the traditional uniform recharge assumption can lead to misleading decisions related to water resources management and pumping well network design.
The effect of pumping well network and the provincial Water Act on water resources sustainability are further examined in an evolving climate. The results suggest potential water resource problem in the basin, which can possibly be attributed to the previously installed pumping well network (depth and screen level), and the provincial water use policy. The findings of this study demonstrate that such problems related to inappropriate well network and water resource management can greatly be minimised with the use of the recharge estimation method developed in this study.
|
78 |
Trading Carbon and Water Through Vegetation ShiftsKim, John H. January 2011 (has links)
<p>In this dissertation, I explored the effects of vegetation type on ecosystem services, focusing on services with significant potential to mitigate global environmental challenges: carbon sequestration and groundwater recharge. I analyzed >600 estimates of groundwater recharge to obtain the first global combined analysis of groundwater recharge and vegetation type. Using a regression model, I found that vegetation was the second best predictor of recharge after precipitation. Recharge rates were lowest under forests, intermediate in grasslands, and highest under croplands. The differences between vegetation types were higher in more humid climates and sandy soils but proportionately, the differences between vegetation types were higher in more arid climates and clayey soils. My extensive field estimates of recharge under paired vegetation types in central Argentina and southwestern United States provided a more direct test of the relationships between vegetation and recharge. The field data confirmed the strong influences of vegetation and its interactions with abiotic factors on recharge observed in the synthesis. The results indicate that vegetation shifts have a proportionately larger potential to affect recharge in more arid climates and clayey soils.</p><p>At the same study systems, I compared my field estimates of recharge to organic carbon stocks (in biomass, litter and soil) under the different vegetation types to evaluate tradeoffs between carbon sequestration and groundwater recharge as affected by vegetation shifts. To determine net values of vegetation shifts, I combined the changes in carbon and water with reported economic values of the ecosystem services. Based on physiological tradeoffs between photosynthesis and transpiration in plants, I hypothesized that vegetation promoting carbon storage would reduce recharge and vice versa. Changes in water and carbon services were inversely proportional, with rain-fed cultivation increasing groundwater recharge but decreasing carbon storage compared to the grasslands they replaced whereas woody encroachment did the opposite. In contrast, cultivated plots irrigated with ground water decreased both ecosystem services. Higher precipitation and clay content both exacerbated changes in carbon storage with grassland conversions, whereas higher precipitation accentuated, but higher clay content diminished, those in recharge. Regardless of the nature of vegetation shift, most of the net values of grassland conversions were negative, with the shifts representing increasing costs in the following order: woody encroachment, rain-fed cultivation and irrigated cultivation. Values of changes in carbon were greater in magnitude than those of recharge, indicating that establishment of carbon markets may drive land-use changes in grasslands over water markets.</p><p>Lastly, I examined the effects of changes in subsurface hydrology resulting from grassland conversion to croplands on soil inorganic carbon stocks in the same U.S. study system. I observed significantly lower inorganic carbon stocks under both rain-fed and irrigated croplands compared to the grasslands they replaced. The losses were visible to past 6 m depth in the soil profile and were uncharacteristically rapid for the carbon pool that is considered to be relatively inert. Based on the negative relationship between the inorganic carbon stocks and recharge rates and higher estimated exports of bicarbonates in recharge under croplands, I concluded that increased recharge with cultivation resulted in dissolution and leaching of grassland soil carbonates. Ecosystem services and their relationships to biotic and abiotic factors quantified here will further our understanding of the tradeoffs and interactions between the two services through vegetation shifts.</p> / Dissertation
|
79 |
A Study of the Precursors for Disinfection By-Products on the CAP Avra Valley Recharge ProjectLutz, Theresa Marie January 2000 (has links) (PDF)
Thesis (M.S. - Soil, Water and Environmental Sciences)--University of Arizona. / Includes bibliographical references (leaves 107-111)
|
80 |
Hydrology of forest ecosystems in the Honouliuli Preserve implications for groundwater recharge and watershed restoration /Gaskill, Teresa G. Restom January 2004 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2004. / Includes bibliographical references.
|
Page generated in 0.0514 seconds