• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 1
  • 1
  • Tagged with
  • 26
  • 12
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Fourier algebra of a locally trivial groupoid

Marti Perez, Laura Raquel January 2011 (has links)
The goal of this thesis is to define and study the Fourier algebra A(G) of a locally compact groupoid G. If G is a locally compact group, its Fourier-Stieltjes algebra B(G) and its Fourier algebra A(G) were defined by Eymard in 1964. Since then, a rich theory has been developed. For the groupoid case, the algebras B(G) and A(G) have been studied by Ramsay and Walter (borelian case, 1997), Renault (measurable case, 1997) and Paterson (locally compact case, 2004). In this work, we present a new definition of A(G) in the locally compact case, specially well suited for studying locally trivial groupoids. Let G be a locally compact proper groupoid. Following the group case, in order to define A(G), we consider the closure under certain norm of the span of the left regular G-Hilbert bundle coefficients. With the norm mentioned above, the space A(G) is a commutative Banach algebra of continuous functions of G vanishing at infinity. Moreover, A(G) separates points and it is also a B(G)-bimodule. If, in addition, G is compact, then B(G) and A(G) coincide. For a locally trivial groupoid G we present an easier to handle definition of A(G) that involves "trivializing" the left regular bundle. The main result of our work is a decomposition of A(G), valid for transitive, locally trivial groupoids with a "nice" Haar system. The condition we require the Haar system to satisfy is to be compatible with the Haar measure of the isotropy group at a fixed unit u. If the groupoid is transitive, locally trivial and unimodular, such a Haar system always can be constructed. For such groupoids, our theorem states that A(G) is isomorphic to the Haagerup tensor product of the space of continuous functions on Gu vanishing at infinity, times the Fourier algebra of the isotropy group at u, times space of continuous functions on Gu vanishing at infinity. Here Gu denotes the elements of the groupoid that have range u. This decomposition provides an operator space structure for A(G) and makes this space a completely contractive Banach algebra. If the locally trivial groupoid G has more than one transitive component, that we denote Gi, since these components are also topological components, there is a correspondence between G-Hilbert bundles and families of Gi-Hilbert bundles. Thanks to this correspondence, the Fourier-Stieltjes and Fourier algebra of G can be written as sums of the algebras of the Gi components. The theory of operator spaces is the main tool used in our work. In particular, the many properties of the Haagerup tensor product are of vital importance. Our decomposition can be applied to (trivially) locally trivial groupoids of the form X times X and X times H times X, for a locally compact space X and a locally compact group H. It can also be applied to transformation group groupoids X times H arising from the action of a Lie group H on a locally compact space X and to the fundamental groupoid of a path-connected manifold.
12

Groupoids of homogeneous factorisations of graphs

Okitowamba, Onyumbe January 2009 (has links)
Magister Scientiae - MSc / This thesis is a study on the confluence of algebraic structures and graph theory. Its aim is to consider groupoids from factorisations of complete graphs. We are especially interested in the cases where the factors are isomorphic. We analyse the loops obtained from homogeneous factorisations and ask if homogeneity is reflected in the kind of loops that are obtained. In particular, we are interested to see if we obtain either groups or quasi-associative Cayley sets from these loops. November 2008. / South Africa
13

Renormalization procedures for C*-algebras

Hume, Jeremy 18 August 2021 (has links)
Renormalization procedures for families of dynamical systems have been used to prove many interesting results. Examples of results include that the bifurcation rate for the attractors of an analytic one-parameter family of quadratic-like maps is universal for all such families, unique ergodicity for almost every interval exchange mapping, a unique ergodicity criterion for the vertical translation flow of a flat surface in terms of its ``renormalization dynamics", known as Masur's criterion, and the classification of circle diffeomorphisms up to $C^{\infty}$ conjugation. We introduce renormalization procedures for $C^{*}$-algebras and étale groupoids using the concepts of $C_{0}(X)$-algebras and Morita equivalence for the former, and groupoid bundles and groupoid equivalence, in the sense of Muhly, Renault and Williams, for the latter. We focus on proving analogs to Masur's criterion in both cases using $C^{*}$-algebraic methods. Applying our criterion to our examples of renormalization procedures provides a unique trace criterion for unital AF algebras extending the one provided by Treviño in the setting of flat surfaces and the one provided by Veech in the setting of interval exchange mappings. Also, we recover the old fact that rotation of the circle by an irrational angle is uniquely ergodic, and the new fact that interesting groupoids associated to certain iterated function systems, recently introduced by Korfanty, have unique invariant probability measures whenever they are minimal. Lastly, we show how an étale groupoid renormalization procedure arises from an étale groupoid which factors down onto a groupoid associated to its renormalization dynamics, whenever it is a local homeomorphism. / Graduate
14

Higher Groupoid Actions, Bibundles, and Differentiation

Li, Du 15 July 2014 (has links)
No description available.
15

Deformation problems in Lie groupoids / Problemas de deformação em grupoides de Lie

Cárdenas, Cristian Camilo Cárdenas 20 April 2018 (has links)
In this thesis we present the deformation theory of Lie groupoid morphisms, Lie subgroupoids and symplectic groupoids. The corresponding deformation complexes governing such deformations are defined and used to investigate a Moser argument in each of these contexts. We also apply this theory to the case of Lie group morphisms and Lie subgroups, obtaining rigidity results of these structures. Moreover, in the case of symplectic groupoids, we define a map between the differentiable and deformation cohomology of the underlying groupoid, which is regarded as the global counterpart of a map $i$ defined by Crainic and Moerdijk (2004) which relates the (Poisson) cohomology of the Poisson structure on the base $M$ of the groupoid to the deformation cohomology of the Lie algebroid $T^{*}M$ associated to it. / Nesta tese apresentamos a teoria de deformação de morfismos de grupoides de Lie, subgrupoides de Lie e grupoides simpléticos, definimos os correspondentes complexos de deformação que controlam as deformações destas estruturas, e usamos estes complexos para desenvolver o argumento de Moser em cada um destes contextos. Também aplicamos esta teoria ao caso de morfismos de grupos de Lie e subgrupos de Lie obtendo resultados de rigidez de tais estruturas. Ademais, no caso de grupoides simpléticos, definimos uma função entre a cohomologia diferenciável e a cohomologia de deformação do grupoide, que é interpretada como o análogo global da aplicação $i$ definida por Crainic e Moerdijk (2004) que relaciona a cohomologia de Poisson da estrutura de Poisson induzida na base $M$ do grupoide com a cohomologia de deformação do algebroide de Lie $T^{*}M$ associado à estrutura de Poisson.
16

Representing Certain Continued Fraction AF Algebras as C*-algebras of Categories of Paths and non-AF Groupoids

January 2020 (has links)
abstract: C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle for higher rank graphs and show that the lack of such an object is necessary for the associated C*-algebra to be AF. Here, I give a class of examples of categories of paths whose associated C*-algebras are Morita equivalent to a large number of periodic continued fraction AF algebras, first described by Effros and Shen in 1980. I then provide two examples which show that the analogue of cycles proposed by Evans and Sims is neither a necessary nor a sufficient condition for the C*-algebra of a category of paths to be AF. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2020
17

Quantum transformation groupoids : an algebraic and analytical approach / Groupoïdes quantiques de transformations : une approche algébrique et analytique

Taipe Huisa, Frank 11 December 2018 (has links)
Cette thèse porte sur la construction d'une famille de groupoïdes quantiques de transformations qui dans le cadre algébrique sont des algébroïdes de Hopf de multiplicateurs mesurés au sens de Timmermann et Van Daele et qui dans le cadre des algèbres d'opérateurs sont des C*-bimodules de Hopf sur une C*-base au sens de Timmermann.Dans le contexte purement algébrique, nous définissons d'abord une algèbre involutive de Yetter-Drinfeld tressée commutative sur un groupe quantique algébrique au sens de Van Daele et une intégrale de Yetter-Drinfeld sur elle. En utilisant ces objets nous construisons après un algébroide de Hopf de multiplicateurs involutif mesuré, ce nouvel objet nous l'appellons groupoïde quantique algébrique de transformations.Pour être capables de passer au cadre des algèbres d'opérateurs, nous donnons des conditions sur l'intégral de Yetter-Drinfeld qui vont nous permettre d'utiliser la construction Gelfand–Naimark–Segal pour étendre tous nos objets purement algébriques en des objets C*-algébriques. Dans ce contexte, notre construction se fait d'une manière similaire à celle présentée dans le travail de Enock et Timmermann, nous obtenons un nouvel objet mathématique que nous appellons un groupoïde quantique C*-algébrique de transformations, qui est définit en utilisant le langage des C*-bimodules de Hopf sur une C*-base. / This thesis is concerned with the construction of a family of quantum transformation groupoids in the algebraic framework in the form of the measured multiplier Hopf *-algebroids in the sense of Timmermann and Van Daele and also in the context of operator algebras in the form of Hopf C*-bimodules on a C*-base in the sense of Timmermann.In the purely algebraic context, we first give a definition of a braided commutative Yetter-Drinfeld *-algebra over an algebraic quantum group in the sense of Van Daele and a Yetter-Drinfeld integral on it. Then, using these objects we construct a measured multiplier Hopf *-algebroid, we call to this new object an algebraic quantum transformation groupoid.In order to pass to the operator algebra framework, we give some conditions on the Yetter-Drinfeld integral inspired by the properties of KMS-weights on C*-algebras which will allow us to use the Gelfand–Naimark–Segal construction to extend all the purely algebraic objects to the C*-algebraic level. At this level, we construct in a similar way to that used in the work of Enock and Timmermann, a new mathematical object that we call a C*-algebraic quantum transformation groupoid, which is defined using the language of Hopf C*-bimodules on C*-bases.
18

Groupoid C*-algebras, conformal measures and phase transitions / C*-álgebras de grupóides, medidas conformes e transições de fase

Frausino, Rodrigo Souza 06 July 2018 (has links)
The objective of this work is the study of phase transitions on the context of Groupoids and their C*-Algebras. The main result of this dissertation is due to Klaus Thomsen in [Tho17], which investigates the connection between conformal measures in the classical formalism and KMS-states in the quantum formalism. The phase transition in the quantum setting is a consequence of this connection between both formalisms and the fact that on the classical setting it was known examples of continuous potentials that show the phenomena of phase transition. The potential used was introduced by Hofbauer [Hof77], an example that shows, dierently from potential of summable variations, potentials only continuous can exhibit phase transition. / O objetivo deste trabalho é o estudo do fenômeno de transição de fase no contexto de Grupóides e suas C*-álgebras. O resultado principal é devido a Klaus Thomsen em [Tho17], que explora a conexão entre medidas conformes no formalismo clássico e estados KMS do contexto quântico. A transição de fase no caso quântico é consequência desta ligação entre os dois formalismos e do fato de que no setting clássico eram conhecidos exemplos de potenciais contínuos que apresentam o fenômeno de transição de fase. O potencial utilizado é aquele introduzido por Hofbauer [Hof77], um exemplo que mostra que, diferentemente de potenciais de variação somável, potenciais apenas contínuos podem apresentar transição de fase.
19

Teorema de Serre-Swan para grupoides de Lie étale / Serre-Swan\'s theorem for étale Lie groupoids

Conrado, Jackeline 12 December 2016 (has links)
Este trabalho tem dois objetivos principais. O primeiro é estender o Teorema de Serre-Swan para grupoides de Lie étale. O segundo é demonstrar que, se dois grupoides de Lie étale são Morita equivalentes então a categoria dos módulos sobre as álgebras de convolução destes grupoides são equivalentes, e esta equivalência preserva a subcategoria dos módulos de tipo finito e posto constante. / In this work we have two main goals. The first one is to extend the Serre-Swan\'s theorem. Our second goal is to prove, if two étale Lie groupoids are Morita equivalence then the category of modules over its convolution algebra are Morita equivalence, and this equivalence preserve the subcategory of modules of finite type and of constant rank.
20

A Categorical Study of Composition Algebras via Group Actions and Triality

Alsaody, Seidon January 2015 (has links)
A composition algebra is a non-zero algebra endowed with a strictly non-degenerate, multiplicative quadratic form. Finite-dimensional composition algebras exist only in dimension 1, 2, 4 and 8 and are in general not associative or unital. Over the real numbers, such algebras are division algebras if and only if they are absolute valued, i.e. equipped with a multiplicative norm. The problem of classifying all absolute valued algebras and, more generally, all composition algebras of finite dimension remains unsolved. In dimension eight, this is related to the triality phenomenon. We approach this problem using a categorical language and tools from representation theory and the theory of algebraic groups. We begin by considering the category of absolute valued algebras of dimension at most four. In Paper I we determine the morphisms of this category completely, and describe their irreducibility and behaviour under the actions of the automorphism groups of the algebras. We then consider the category of eight-dimensional absolute valued algebras, for which we provide a description in Paper II in terms of a group action involving triality. Then we establish general criteria for subcategories of group action groupoids to be full, and applying this to the present setting, we obtain hitherto unstudied subcategories determined by reflections. The reflection approach is further systematized in Paper III, where we obtain a coproduct decomposition of the category of finite-dimensional absolute valued algebras into blocks, for several of which the classification problem does not involve triality. We study these in detail, reducing the problem to that of certain group actions, which we express geometrically. In Paper IV, we use representation theory of Lie algebras to completely classify all finite-dimensional absolute valued algebras having a non-abelian derivation algebra. Introducing the notion of quasi-descriptions, we reduce the problem to the study of actions of rotation groups on products of spheres. We conclude by considering composition algebras over arbitrary fields of characteristic not two in Paper V. We establish an equivalence of categories between the category of eight-dimensional composition algebras with a given quadratic form and a groupoid arising from a group action on certain pairs of outer automorphisms of affine group schemes

Page generated in 1.507 seconds