• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 21
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 21
  • 20
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

3D Thermal Mapping of Cone Calorimeter Specimen and Development of a Heat Flux Mapping Procedure Utilizing an Infrared Camera

Choi, Keum-Ran 02 February 2005 (has links)
The Cone Calorimeter has been used widely for various purposes as a bench - scale apparatus. Originally the retainer frame (edge frame) was designed to reduce unrepresentative edge burning of specimens. In general, the frame has been used in most Cone tests without enough understanding of its effect. It is very important to have one - dimensional (1D) conditions in order to estimate thermal properties of materials. It has been implicitly assumed that the heat conduction in the Cone Calorimeter is 1D using the current specimen preparation. However, the assumption has not been corroborated explicitly to date. The first objective of this study was to evaluate the heat transfer behavior of a Cone specimen by examining its three - dimensional (3D) heat conduction. It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full - scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full - scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The second objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment is performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.
72

Extensão do modelo Raise and Peel / Extension of the Raise and Peel model

Santamaria, Julian Andres Jaimes 25 July 2011 (has links)
O modelo raise and peel é um modelo estocástico unidimensional com absorção local e desorção não local. O modelo depende de um único parâmetro u que é a razão entre a taxa de absorção pela de dessorção. Em um valor especial deste parâmetro (u = 1) o modelo tem características interessantes. O espectro é descrito por uma teoria de campos conforme (carga central c = 0), sendo que a distribuição de probabilidade estacionária está relacionada a um sistema de equilíbrio em duas dimensões. O diagrama de fases do modelo, como função do parâmetro u, tem uma fase massiva (com lacuna de massa) e uma sem massa (lacuna de massa nula) com expoentes críticos que variam continuamente com o parâmetro u. Nesta dissertação estudamos uma extensão do modelo raise and peel model no ponto u = 1, e que depende de um parâmetro adicional p. Surpreendentemente o novo modelo exibe invariância conforme para todo o domínio do seu parâmetro p, e está na mesma classe de universalidade do modelo raise and peel usual (u = 1). A única diferença entre os dois modelos é o valor da velocidade do som vs(p), que agora é função de p. Os métodos que utilizamos nesta dissertação foram diagonalizações exatas do operador de evolução do modelo (Hamiltoniano) para cadeias pequenas e simulações de Monte Carlo. / The raise and peel model is a one-dimensional nonlocal stochastic model where adsorption happens locally and desorption is nonlocal. The model depends on the single parameter u that is the ratio among the desorption and adsorption rates. At a special value of this parameter (u = 1) the model has interesting features. The spectrum is described by a conformal field theory (central charge c = 0), and its stationary probability density is related to the equilibrium distribution of a two dimensional system. The phase diagram of the model, as a function of the parameter u, has a massive phase (gapped phase) and a massless (gapless phase) whose critical exponents vary continuously with u. In this monography we study a one-parameter extension of the raise and peel model at u = 1, that depends on the additional parameter p. The new model exhibits conformal invariance for the whole range of values of its parameter p, and it is in the same universality class as the usual raise and peel model. The single difference between the models is the value of the sound velocity vs(p) which is a function of p. The methods used in this monography are the exact diagonalization of the evolution operator of the stochastic model (Hamiltonian), for small lattice sizes and Monte Carlo simulations.
73

Growth made simple : How to grow a small company into a large corporation

Rutgersson, Christoffer, Uddenberg, Anders January 2010 (has links)
This study is about rapid growth in SMEs from an entrepreneur’s or manager’s perspective and it aim to find practices in order to enable and drive rapid growth. The purpose of this thesis is to understand how owner-led small businesses can be managed in order to maximize the profitable long term growth of the company. In order to understand this we have had a pragmatic perspective and have attempted to find practices that drive and enable fast growth. The study consists of an extensive literature study on the subject and five case studies of Swedish rapid growth companies. Each case study consisted of gathering secondary data and conducting 1-4 interviews at each company with Entrepreneurs, CEOs, CFOs and Sales managers. The result from the literature study and the case studies is a model for growth that is shown below. The model consists of eight different areas that are important to drive or enable growth in companies.  Each area in the model was identified as a driver, enabler or blocker of growth for each case study.   The conclusions from this thesis are five propositions regarding rapid growth that is listed below. ü  Proposition 1: All the areas in our analysis model can either be a blocker, an enabler or a driver of growth. ü  Proposition 2: It is possible to deliberately transform an area from a blocker, or enabler, into a driver of growth. ü  Proposition 3: It is important to make the business scalable so no area becomes a blocker of growth. ü  Proposition 4: The three areas, time monopoly, sales, and leadership could be considered as primary drivers for growth. ü  Proposition 5: The two areas culture and expansion could be considered as primary enablers of growth. The findings from this study are highly valuable for managers or entrepreneurs that want to increase growth of their companies.
74

Extensão do modelo Raise and Peel / Extension of the Raise and Peel model

Julian Andres Jaimes Santamaria 25 July 2011 (has links)
O modelo raise and peel é um modelo estocástico unidimensional com absorção local e desorção não local. O modelo depende de um único parâmetro u que é a razão entre a taxa de absorção pela de dessorção. Em um valor especial deste parâmetro (u = 1) o modelo tem características interessantes. O espectro é descrito por uma teoria de campos conforme (carga central c = 0), sendo que a distribuição de probabilidade estacionária está relacionada a um sistema de equilíbrio em duas dimensões. O diagrama de fases do modelo, como função do parâmetro u, tem uma fase massiva (com lacuna de massa) e uma sem massa (lacuna de massa nula) com expoentes críticos que variam continuamente com o parâmetro u. Nesta dissertação estudamos uma extensão do modelo raise and peel model no ponto u = 1, e que depende de um parâmetro adicional p. Surpreendentemente o novo modelo exibe invariância conforme para todo o domínio do seu parâmetro p, e está na mesma classe de universalidade do modelo raise and peel usual (u = 1). A única diferença entre os dois modelos é o valor da velocidade do som vs(p), que agora é função de p. Os métodos que utilizamos nesta dissertação foram diagonalizações exatas do operador de evolução do modelo (Hamiltoniano) para cadeias pequenas e simulações de Monte Carlo. / The raise and peel model is a one-dimensional nonlocal stochastic model where adsorption happens locally and desorption is nonlocal. The model depends on the single parameter u that is the ratio among the desorption and adsorption rates. At a special value of this parameter (u = 1) the model has interesting features. The spectrum is described by a conformal field theory (central charge c = 0), and its stationary probability density is related to the equilibrium distribution of a two dimensional system. The phase diagram of the model, as a function of the parameter u, has a massive phase (gapped phase) and a massless (gapless phase) whose critical exponents vary continuously with u. In this monography we study a one-parameter extension of the raise and peel model at u = 1, that depends on the additional parameter p. The new model exhibits conformal invariance for the whole range of values of its parameter p, and it is in the same universality class as the usual raise and peel model. The single difference between the models is the value of the sound velocity vs(p) which is a function of p. The methods used in this monography are the exact diagonalization of the evolution operator of the stochastic model (Hamiltonian), for small lattice sizes and Monte Carlo simulations.

Page generated in 0.0551 seconds