• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth Models and Mortality Functions for Unthinned and Thinned Loblolly Pine Plantations

Westfall, James A. 02 October 1998 (has links)
Effects of thinning, such as increased diameter growth and decreased mortality in the residual stand, have been recognized by foresters for many years. These effects are largely the result of increased tree vigor which is induced by a decreased level of competition. These relationships are reflected in many of the models that are central to PTAEDA2, a growth and yield simulator which was developed for use with loblolly pine (Pinus taeda) plantations established on cut-over, site prepared lands. Data from a long-term thinning study served as a basis for attempting to improve the predictive output of PTAEDA2. Assessment of differences in model parameter estimates between three levels of thinning intensity led to various approaches to reach this goal. Height increment and mortality models were found to need no additional refinement and were re-fit using all available data. Diameter increment and crown ratio model forms could not account for thinning effects in their present form and thinning response functions that could provide the proper behavioral response were added to these models.Models were evaluated individually and in combinations in a reduced growth simulator. This reduced simulator is a modified form of the growth subroutines in PTAEDA2 and is designed to utilize external data. Results of growth simulation runs show improvements in predictive ability for the crown ratio model fit to all data and for the re-fit height increment model/crown ratio model with thinning response variable combination. The diameter increment model with a thinning response variable significantly improved diameter prediction within the simulator, but predicted stand volumes were poor. The re-fit mortality function resulted in greater prediction error for mortality than the original PTAEDA2 mortality function. / Master of Science
2

DYNAMIC CRYSTAL SIZE DISTRIBUTION SIMULATION AND CONTROL STRATEGIES FOR CRYSTALLIZERS EQUIPPED WITH FINES DESTRUCTION AND PRODUCT CLASSIFICATION.

Sibert, William Paul. January 1982 (has links)
No description available.
3

SIMULATION OF METAL GRAIN GROWTH IN LASER POWDER BED FUSION PROCESS USING PHASE FIELD THERMAL COUPLED MODEL

Huang, Zhida 23 May 2019 (has links)
No description available.
4

Models of stand basal area distributions, individual tree basal area growth, and height-diameter relationships for loblolly pine

Green, Edwin James January 1981 (has links)
The study dealt with developing methodologies for predicting basal area distributions and individual tree basal areas. Data for the study was from the Hill Farm Experiment Station at Homer, Louisiana. Five height-diameter (basal area) curves were examined to determine which was most appropriate for the data set utilized. The model H = a + b log(BA), where H denotes height and BA denotes basal area, was chosen as best, based on several fit and prediction oriented statistics. A stochastic basal area distribution model, called the parameter distribution model, was developed. The model was based on the Chapman-Richards growth curve. This curve was fit to all stems on approximately 3/4 of the data set. Two parameters of the curve were fixed a priori, leaving two parameters to be estimated. A sampling distribution was fit to the estimates of the rate parameter, k. Models were developed to predict the parameters of this distribution from stand variables. A model was then derived to predict m, the shape parameter of the C-R curve, from k and stand variables. Finally, an existing survival function was modified. The overall model was implemented as follows: first, the number of surviving stems was predicted. Then k and m values were predicted for each predicted stem. Substitution of these two values into the C-R curve yielded a predicted basal area for each stem. The previously mentioned height diameter curve was employed to predict a height for each predicted basal area. Stochastic elements were built into the prediction model for m and the height-diameter curve. Predicted basal area and height distributions were compared to observed on the remaining 1/4 of the data set. Although the two--sample K-S test was statistically significant, the observed and predicted distributions did appear to be close, in general, from a practical standpoint. This approach appears promising as a stochastic method of predicting size distributions. The Chapman-Richards curve was also modified for use as an individual tree basal area growth model. Two parameters of the curve were fixed, and the remaining two were modelled as functions of tree- and stand-level variables. The modified growth function fit the data well, but on an independent data set, a simpler linear model of basal area growth performed better in terms of mean difference and mean absolute difference between observed and predicted basal areas. Thus, the only anticipated use of the modified C-R model is in situations where extrapolation beyond the range of observed data is required, since this model has desirable long-term characteristics, whereas the linear model does not. / Ph. D.
5

A growth and yield prediction model for thinned stands of yellow- poplar

Knoebel, Bruce R. January 1982 (has links)
Analysis and evaluation of the simultaneous growth and yield equations presented by Beck and Della-Bianca (1972) for predicting basal area growth and cubic-foot volume growth and yield in yellow-poplar stands after a single thinning indicated that a separate set of coefficients was required for stands thinned twice. A joint loss function involving both volume and basal area was used to estimate the coefficients in the system of equations. The estimates obtained were analytically compatible, invariant for projection length, and numerically equivalent with alternative applications of the equations. Given estimates of basal area and cubic-foot volume from these equations, board-foot volumes can also be calculated. As an adjunct to the stand level equations, compatible stand tables were derived by solving for the parameters of the Weibull distribution from attributes predicted with the stand-level equations. This procedure for estimating the parameters of the diameter distributions of the stands before thinning gave reasonable estimates of number of trees, basal area, and cubic-foot volume per acre by diameter class. The thinning algorithm removes a proportion of the basal area from each diameter class and produces stand and stock tables after thinning from below that are consistent with those generated before thinning. Finally, volume ratio equations were fitted to provide estimates of merchantable volume, i.b. or o.b., to either a specified diameter or height limit, where volume between any two diameter or height limits can be obtained through subtraction. Through rearrangement of the ratio equations, implicit taper functions were specified to predict height at a given diameter and diameter at a given height. / Master of Science
6

Simulação do crescimento da cana-de-açucar pelo modelo agrohidrológico SWAP/WOFOST / Sugarcane growth simulation by hydrological model SWAP/WOFOST

Scarpare, Fábio Vale 31 August 2011 (has links)
Modelos de simulação têm sido utilizados em estudos agronômicos e ecológicos como ferramenta de pesquisa, possibilitando organizar o entendimento das respostas das plantas a diferentes condições ambientais e, consequentemente predizer a produtividade das culturas. O sucesso na aplicação de modelos depende de sua calibração e das avaliações efetuadas por meio da estimação dos índices morfofisiológicos e dos parâmetros tecnológicos de rendimento da cultura. No presente estudo os objetivos foram: utilizar o conjunto composto por um modelo agrohidrológico (SWAP, Soil Water Atmosphere and Plant) com um modelo genérico de crescimento de cultura (WOFOST, WOrld FOod STudies) adaptando-o para a cultura da cana-deaçúcar; usar o programa PEST (Parameter ESTimation) para calibrar e realizar a análise de sensibilidade dos parâmetros desse modelo; avaliar a eficácia do modelo calibrado e validado para a estimação de massa fresca de colmos industrializáveis por hectare (TCH) e avaliar a eficácia do modelo estimando as propriedades hidráulicas do solo por funções de pedotransferência (PTFs). Dados experimentais da cultivar SP 81- 3250 foram utilizadas para a calibração (4 ciclos de produção: cana planta e 3 socas conduzidas na usina Santa Adélia), na análise de sensibilidade (cana planta conduzida na usina Santa Adélia) e validação do modelo (8 ciclos de produção: cana planta e 3 socas conduzidas em 2 usinas). A produtividade média de 25 cultivares em 10 locais da região Centro-Sul foi utilizada para avaliar a eficiência do modelo validado na previsão de colheita. A avaliação desses procedimentos foi realizada por meio dos índices estatísticos: raiz quadrada dos quadrados dos desvios (RMSE), coeficiente de regressão linear (R2), índice de concordância (d) e índice de eficiência (E) em dados de matéria seca simuladas pelo modelo versus dados observados a campo. Bons resultados foram obtidos na calibração e validação do modelo, portanto conclui-se o SWAP/WOFOST apto na utilização da simulação da massa seca da parte aérea. De modo geral, o modelo mostrou alta sensibilidade relativa aos parâmetros do grupo de assimilação de CO2 para a massa seca final da parte aérea. Ainda, o programa PEST foi eficaz na otimização dos parâmetros hidráulicos confrontando o conteúdo de água no solo medido a campo pelo método gravimétrico versus simulado pelo modelo. A previsão de safra realizada pelo SWAP/WOFOST apresentou valores de RMSE semelhantes aos obtidos com o APSIM-Sugarcane. Contudo, por meio de outros índices estatísticos o desempenho do SWAP/WOFOST foi intermediário. A eficiência do modelo em simular a massa seca da parte aérea em ambos os ciclos estudados, cana planta e socas, não foi afetada quando os parâmetros hidráulicos do solo foram obtidos por meios de PTFs. / Simulation models have been used in agricultural and ecological studies as a research tool allowing to organize and comprehend crop response under different environmental conditions, and to predict crop yield. The successful application of models depends on its calibration and assessment performed through morphophysiological index estimation and technological parameters of crop yield. The aims of this study were: to use the combination of a hydrological model (SWAP, Soil Water Atmosphere and Plant) with a generic crop growth model (WOFOST, WOrld FOod STudies) adapted to the sugarcane crop; to use PEST software (Parameter ESTimation) to calibrate and perform the sensitivity analysis of the model parameters; to appraise the model efficiency in estimating fresh weight of cane stems per hectare (TCH) and also to evaluate the effectiveness of the model when estimating soil hydraulic properties generated by pedotransfer functions (PTFs). Experimental data from SP 81-3250 cultivar were used for calibration (4 production cycles: first year cane and 3 ratoons at Santa Adélia sugarcane mill planting area), sensitivity analysis (first year cane at Santa Adélia sugarcane mill planting area) and validation (8 production cycles: 2 first year cane and 6 ratoons at two other sugarcane mill planting areas). Average yield from 25 cultivars grown among 10 different sites in Brazilian South-Central region were used to evaluate the model efficiency on yield prediction. The root mean square error (RMSE), coefficient of determination (R2), index of agreement (d) and coefficient of efficiency (E) were used to evaluate these procedures comparing above ground dry weight simulated by the model versus dry weight measured on the field. Good results were obtained during calibration and validation procedure; hence we may conclude that the SWAP/WOFOST model was able to predict sugarcane above ground dry weight. Model sensitivity analysis showed the group of CO2 assimilation parameters to be the most relevant determining final biomass. PEST software was effective in optimizing the hydraulic parameters by comparing the soil water content simulated by the model against water content measured on the field by the gravimetric method. TCH forecasts made by SWAP/WOFOST showed a similar RMSE as those obtained with the APSIMSugarcane model. However, evaluated by other statistical indexes, the SWAP/WOFOST model performance was intermediate. The model efficiency to simulate the above ground dry weight in crop cycles, first year cane and ratoon, was not affected when the hydraulic input parameters were generated by PTFs.
7

Simulação do crescimento da cana-de-açucar pelo modelo agrohidrológico SWAP/WOFOST / Sugarcane growth simulation by hydrological model SWAP/WOFOST

Fábio Vale Scarpare 31 August 2011 (has links)
Modelos de simulação têm sido utilizados em estudos agronômicos e ecológicos como ferramenta de pesquisa, possibilitando organizar o entendimento das respostas das plantas a diferentes condições ambientais e, consequentemente predizer a produtividade das culturas. O sucesso na aplicação de modelos depende de sua calibração e das avaliações efetuadas por meio da estimação dos índices morfofisiológicos e dos parâmetros tecnológicos de rendimento da cultura. No presente estudo os objetivos foram: utilizar o conjunto composto por um modelo agrohidrológico (SWAP, Soil Water Atmosphere and Plant) com um modelo genérico de crescimento de cultura (WOFOST, WOrld FOod STudies) adaptando-o para a cultura da cana-deaçúcar; usar o programa PEST (Parameter ESTimation) para calibrar e realizar a análise de sensibilidade dos parâmetros desse modelo; avaliar a eficácia do modelo calibrado e validado para a estimação de massa fresca de colmos industrializáveis por hectare (TCH) e avaliar a eficácia do modelo estimando as propriedades hidráulicas do solo por funções de pedotransferência (PTFs). Dados experimentais da cultivar SP 81- 3250 foram utilizadas para a calibração (4 ciclos de produção: cana planta e 3 socas conduzidas na usina Santa Adélia), na análise de sensibilidade (cana planta conduzida na usina Santa Adélia) e validação do modelo (8 ciclos de produção: cana planta e 3 socas conduzidas em 2 usinas). A produtividade média de 25 cultivares em 10 locais da região Centro-Sul foi utilizada para avaliar a eficiência do modelo validado na previsão de colheita. A avaliação desses procedimentos foi realizada por meio dos índices estatísticos: raiz quadrada dos quadrados dos desvios (RMSE), coeficiente de regressão linear (R2), índice de concordância (d) e índice de eficiência (E) em dados de matéria seca simuladas pelo modelo versus dados observados a campo. Bons resultados foram obtidos na calibração e validação do modelo, portanto conclui-se o SWAP/WOFOST apto na utilização da simulação da massa seca da parte aérea. De modo geral, o modelo mostrou alta sensibilidade relativa aos parâmetros do grupo de assimilação de CO2 para a massa seca final da parte aérea. Ainda, o programa PEST foi eficaz na otimização dos parâmetros hidráulicos confrontando o conteúdo de água no solo medido a campo pelo método gravimétrico versus simulado pelo modelo. A previsão de safra realizada pelo SWAP/WOFOST apresentou valores de RMSE semelhantes aos obtidos com o APSIM-Sugarcane. Contudo, por meio de outros índices estatísticos o desempenho do SWAP/WOFOST foi intermediário. A eficiência do modelo em simular a massa seca da parte aérea em ambos os ciclos estudados, cana planta e socas, não foi afetada quando os parâmetros hidráulicos do solo foram obtidos por meios de PTFs. / Simulation models have been used in agricultural and ecological studies as a research tool allowing to organize and comprehend crop response under different environmental conditions, and to predict crop yield. The successful application of models depends on its calibration and assessment performed through morphophysiological index estimation and technological parameters of crop yield. The aims of this study were: to use the combination of a hydrological model (SWAP, Soil Water Atmosphere and Plant) with a generic crop growth model (WOFOST, WOrld FOod STudies) adapted to the sugarcane crop; to use PEST software (Parameter ESTimation) to calibrate and perform the sensitivity analysis of the model parameters; to appraise the model efficiency in estimating fresh weight of cane stems per hectare (TCH) and also to evaluate the effectiveness of the model when estimating soil hydraulic properties generated by pedotransfer functions (PTFs). Experimental data from SP 81-3250 cultivar were used for calibration (4 production cycles: first year cane and 3 ratoons at Santa Adélia sugarcane mill planting area), sensitivity analysis (first year cane at Santa Adélia sugarcane mill planting area) and validation (8 production cycles: 2 first year cane and 6 ratoons at two other sugarcane mill planting areas). Average yield from 25 cultivars grown among 10 different sites in Brazilian South-Central region were used to evaluate the model efficiency on yield prediction. The root mean square error (RMSE), coefficient of determination (R2), index of agreement (d) and coefficient of efficiency (E) were used to evaluate these procedures comparing above ground dry weight simulated by the model versus dry weight measured on the field. Good results were obtained during calibration and validation procedure; hence we may conclude that the SWAP/WOFOST model was able to predict sugarcane above ground dry weight. Model sensitivity analysis showed the group of CO2 assimilation parameters to be the most relevant determining final biomass. PEST software was effective in optimizing the hydraulic parameters by comparing the soil water content simulated by the model against water content measured on the field by the gravimetric method. TCH forecasts made by SWAP/WOFOST showed a similar RMSE as those obtained with the APSIMSugarcane model. However, evaluated by other statistical indexes, the SWAP/WOFOST model performance was intermediate. The model efficiency to simulate the above ground dry weight in crop cycles, first year cane and ratoon, was not affected when the hydraulic input parameters were generated by PTFs.
8

Utilização do modelo CANEGRO para estimativa da produtividade de cana-de-açúcar irrigada em diferentes regiões do Brasil / Estimating the potential productivity sugarcane in irrigation conditions in Brazil by CANEGRO model

Barros, Allan Cunha 01 March 2011 (has links)
Na produção da cana-de-açúcar, a irrigação começa a ser empregada mais intensivamente em novas áreas de expansão onde há insuficiência ou má distribuição temporal de chuvas. No entanto, a realização de experimentos, visando fornecer informações de produtividade na tomada de decisão, são onerosos e demoram muito tempo, por esse motivo, os modelos fisiológicos de simulação tornam-se ferramentas importantes, já que através deles é possível estimar a produtividade de uma cultura, em diferentes condições climáticas, sob diferentes épocas de plantio e colheita e sob diferentes métodos de manejo adotado. Assim, o objetivo do trabalho foi gerar informações sobre a produtividade potencial da cana-de-açúcar nas cidades de Gurupi - TO, Teresina - PI, Petrolina - PE e Paranavaí - PA, com plantio e colheita em diferentes datas, através de estimativas de crescimento da cultura utilizando o CANEGRO/DSSAT e determinar o efeito da irrigação sob a produtividade de sequeiro. Os cenários foram baseados em 4 datas de plantio (15 de janeiro, 15 de março, 15 de setembro e 15 de novembro), 2 épocas de colheita (1 e 1,5 anos) e 2 sistemas de produção (irrigado e sequeiro), totalizando 16 cenários por cidade; assim, foi possível verificar que a irrigação e o aumento da época da cultura no campo possibilitaram aumento da produtividade, as produtividades obtiveram valores extremos entre 102 a 208 Mg.ha-¹, 86 a 174 Mg.ha-¹, 43 a 166 Mg.ha-¹ e 99 a 171 Mg.ha-¹, para Gurupi, Teresina, Petrolina e Paranavaí, respectivamente, sendo que o sistema IRR1 (sistema irrigado com colheita um ano depois) apresentou maior renda bruta em todas as cidades / The irrigation is come to used, in the sugarcane production, in the expansion areas where there is insufficient or poor distribution of rainfall. However, performing experiments in order to yield information in decision making, it are expensive and time-intensive, therefore, the models become important tools, since in it is possible to estimate the yield in different climatic conditions, under different planting, harvesting seasons and under different management practices adopted. Thus, the objective was to generate information about the potential productivity of sugarcane in the cities of Gurupi - TO, Teresina - PI, Petrolina - PE, Paranavaí - PA with planting and harvesting at different dates, through estimates of crop growth using CANEGRO /DSSAT and determine the effect of irrigation on productivity. The scenarios were based on four planting dates (January 15, March 15, September 15 and November 15) x 2 harvest times (1 and 1.5 years) x 2 management systems (irrigated and rainfed), totaling 16 scenarios for the city. The irrigation and increased of culture in the field so it was possible to verify that enabled increased of productivity, and it was possibly verify the yeld obtained extreme values between 102 to 208 Mg ha-¹, 86 to 174 Mg ha-¹, 43 to 166 Mg ha-¹ and 99 to 171 Mg ha-¹, to Gurupi, Teresina, Petrolina and Paranavaí, respectively; the IRR1 system (irrigation system with harvest a year later) had a higher gross income in all cities.
9

Towards Precision Agriculture for whole farms using a combination of simulation modelling and spatially dense soil and crop information

Florin, Madeleine Jill January 2008 (has links)
Doctor of Philosophy / Precision Agriculture (PA) strives towards holistic production and environmental management. A fundamental research challenge is the continuous expansion of ideas about how PA can contribute to sustainable agriculture. Some associated pragmatic research challenges include quantification of spatio-temporal variation of crop yield; crop growth simulation modelling within a PA context and; evaluating long-term financial and environmental outcomes from site-specific crop management (SSCM). In Chapter 1 literature about managing whole farms with a mind towards sustainability was reviewed. Alternative agricultural systems and concepts including systems thinking, agro-ecology, mosaic farming and PA were investigated. With respect to environmental outcomes it was found that PA research is relatively immature. There is scope to thoroughly evaluate PA from a long-term, whole-farm environmental and financial perspective. Comparatively, the emphasis of PA research on managing spatial variability offers promising and innovative ways forward, particularly in terms of designing new farming systems. It was found that using crop growth simulation modelling in a PA context is potentially very useful. Modelling high-resolution spatial and temporal variability with current simulation models poses a number of immediate research issues. This research focused on three whole farms located in Australia that grow predominantly grains without irrigation. These study sites represent three important grain growing regions within Australia. These are northern NSW, north-east Victoria and South Australia. Note-worthy environmental and climatic differences between these regions such as rainfall timing, soil type and topographic features were outlined in Chapter 2. When considering adoption of SSCM, it is essential to understand the impact of temporal variation on the potential value of managing spatial variation. Quantifying spatiotemporal variation of crop yield serves this purpose; however, this is a conceptually and practically challenging undertaking. A small number of previous studies have found that the magnitude of temporal variation far exceeds that of spatial variation. Chapter 3 of this thesis dealt with existing and new approaches quantifying the relationship between spatial and temporal variability in crop yield. It was found that using pseudo cross variography to obtain spatial and temporal variation ‘equivalents’ is a promising approach to quantitatively comparing spatial and temporal variation. The results from this research indicate that more data in the temporal dimension is required to enable thorough analysis using this approach. This is particularly relevant when questioning the suitability of SSCM. Crop growth simulation modelling offers PA a number of benefits such as the ability to simulate a considerable volume of data in the temporal dimension. A dominant challenge recognised within the PA/modelling literature is the mismatch between the spatial resolution of point-based model output (and therefore input) and the spatial resolution of information demanded by PA. This culminates into questions about the conceptual model underpinning the simulation model and the practicality of using point-based models to simulate spatial variability. iii The ability of point-based models to simulate appropriate spatial and temporal variability of crop yield and the importance of soil available water capacity (AWC) for these simulations were investigated in Chapter 4. The results indicated that simulated spatial variation is low compared to some previously reported spatial variability of real yield data for some climate years. It was found that the structure of spatial yield variation was directly related to the structure of the AWC and interactions between AWC and climate. It is apparent that varying AWC spatially is a reasonable starting point for modelling spatial variation of crop yield. A trade-off between capturing adequate spatio-temporal variation of crop yield and the inclusion of realistically obtainable model inputs is identified. A number of practical solutions to model parameterisation for PA purposes are identified in the literature. A popular approach is to minimise the number of simulations required. Another approach that enables modelling at every desired point across a study area involves taking advantage of high-resolution yield information from a number of years to estimate site-specific soil properties with the inverse use of a crop growth simulation model. Inverse meta-modelling was undertaken in Chapter 5 to estimate AWC on 10- metre grids across each of the study farms. This proved to be an efficient approach to obtaining high-resolution AWC information at the spatial extent of whole farms. The AWC estimates proved useful for yield prediction using simple linear regression as opposed to application within a complex crop growth simulation model. The ability of point-based models to simulate spatial variation was re-visited in Chapter 6 with respect to the exclusion of lateral water movement. The addition of a topographic component into the simple point-based yield prediction models substantially improved yield predictions. The value of these additions was interpreted using coefficients of determination and comparing variograms for each of the yield prediction components. A result consistent with the preceding chapter is the importance of further validating the yield prediction models with further yield data when it becomes available. Finally, some whole-farm management scenarios using SSCM were synthesised in Chapter 7. A framework that enables evaluation of the long-term (50 years) farm outcomes soil carbon sequestration, nitrogen leaching and crop yield was established. The suitability of SSCM across whole-farms over the long term was investigated and it was found that the suitability of SSCM is confined to certain fields. This analysis also enabled identification of parts of the farms that are the least financially and environmentally viable. SSCM in conjunction with other PA management strategies is identified as a promising approach to long-term and whole-farm integrated management.
10

Modelling And Analysis Of Crack Turning On Aeronautical Structures

Llopart Prieto, Llorenç 21 September 2007 (has links)
La motivació de la tesis deriva en el interès de la indústria aeronàutica a explotar, per mitjà d'un disseny adaptat, la utilització del gir d'esquerda per protegir els reforços situats davant una esquerda que s'està propagant en la xapa d'una estructura integral. L'objectiu principal és l'avaluació i predicció del gir d'esquerda en situacions de càrrega pròximes a Mode I, proporcionant una eina de modelització i un criteri confident. L'entorn industrial sota el qual s'ha realitzat aquest treball requereix una predicció ràpida del comportament estructural proporcionant informació útil als constructors. Per aquest motiu la predicció del gir d'esquerda s'ha investigat utilitzant la teoria linear elàstica de la mecànica de la fractura (LEFM) i l'anàlisi amb elements finits (FEA).Durant aquest treball s'ha demostrat la importància i necessitat de caracteritzar el camp de tensions a la punta de l'esquerda amb el factor d'intensitat de tensió (SIF) conjuntament amb un segon paràmetre. La tensió uniforme, no singular, normal a la línea de l'esquerda i dependent en la geometria i càrrega de la proveta, es a dir la tensió T, ha estat seleccionada com a segon paràmetre per dur a terme les prediccions del gir d'esquerda.El criteri més desenvolupat per predir el gir d'esquerda en situacions pròximes a Mode I és el proposat per Buczek, Herakovich, Boone et al., anomenat WEFO en la tesis. Aquest combina el criteri de tensió principal màxima amb la tensió T i considera efectes d'anisotropia. LEFM s'ha utilitzat també en la predicció del gir d'esquerda sota càrregues quasi estàtiques controlant en tot moment la plastificació del lligament.En la investigació d'eines de modelització/simulació s'ha tingut en compte les capacitats d'aquestes en el camp de la mecànica de la fractura, de disseny, d'implementació, així com la complexitat d'ús. Tot i que hi ha un gran ventall de Softwares que compleixen els requeriments assenyalats, només aquells que es trobaven a l'abast de l'autor s'han analitzat. StressCheck ha estat escollit com a resultat de la investigació. L'avaluació de la propagació de l'esquerda en provetes compactes en tensió (CT) i en provetes amb dos elements reforçants (2SP) sota els règims de Paris i Forman ha estat satisfactòria.Un pas important ha estat la implementació de la capacitat d'extracció de la tensió T. La demostració de la fiabilitat en el seu càlcul s'ha demostrat mitjançant resultats en la literatura i càlculs analítics en provetes de doble biga en volada (DCB). Un aspecte a tenir en compte és la importància en realitzar anàlisis no linears geomètrics pel càlcul del SIF i la tensió T.Prediccions en la trajectòria de l'esquerda s'han realitzat en base amb els resultats obtinguts en l'estudi de modelització. La millor trajectòria s'ha predit per mitjà del criteri WEFO. No obstant, les diferents trajectòries obtingudes per una esquerda propagant-se en la direcció T-L o L-T no són comparables amb els resultats experimentals.Aquestes deficiències estan relacionades en la definició del punt d'inestabilitat de l'esquerda. Algunes referències posen de manifest que hi ha experiències on l'esquerda es comporta de forma estable tot i mostrar T > 0. Per un altre banda, els criteris WEF i WEFO defineixen la inestabilitat dependent d'una distancia específica del material, rc. Però la seva definició no és única i no existeix cap acord sobre el seu càlcul.L'autor proposa un criteri derivat dels criteris existents i basant-se en els assajos, simulacions i resultats obtinguts. Aquest deriva del treball de Pettit i la tensió T normalitzada, TR, proposada per Pook. La fiabilitat d'aquest criteri es demostra amb la proveta DCB. Les prediccions de la trajectòria de l'esquerda en la proveta cruciforme no són tant satisfactòries. Tot i així, s'ha d'accentuar que el criteri desenvolupat proporciona la predicció més acurada. / The motivation of this thesis started from the interest of aeronautical industry to exploit the utilization of crack turning to protect stiffeners in front of an approaching skin-crack in integral structures by a tailored design. The main objective was to assess and predict crack turning under nearly Mode I situations on structures that reproduce aeronautical conditions by providing a modelling tool and a reliable criterion. The industrial environmental in which this work has been carried out requires a fast prediction of the structural behaviour to provide useful inputs to aircraft designers. It is for this reason that the crack turning prediction was investigated by means of LEFM and FEA. During this work it has been shown the importance and necessity of a second parameter for the characterisation of the stress field at the crack tip besides the SIF. Among the different proposed second parameters, the uniform non-singular stress, normal to the crack line and dependent on the type of loading and specimen geometry, i.e. the T-stress, was selected for crack turning predictions due to both calculation simplicity and its independence of the crack tip distance. The most developed criterion for crack turning predictions near Mode I loading is the criterion proposed by Buczek, Herakovich and Boone et al., called the WEFO-criterion. This is the Maximal Principal Stress criterion implemented with the T-stress and taking into account anisotropic effects. A challenge of this thesis was to overcome the lack of prediction on crack turning provided by this last criterion.Although the validity of LEFM is restricted, it was applied for the prediction of crack turning for quasi-static loading while paying attention to possible plastification. A screening of existent commercial and non commercial tools was carried out in respect to their fracture mechanics capabilities, their design abilities, implementation as well as their complexity. Although, there are many software possibilities, only those within the reach of the author were evaluated. This resulted in the selection of the commercial tool StressCheck®. The assessment of crack propagation on compact tension and two stringer specimens governed by the Paris and Forman regimes was satisfactory compared with experimental results using the material data from simple standard specimens.An important step was the implementation of the T-stress extraction facility in the tool and the evidence of its reliability. The latter was proved by literature and analytical calculations on DCB specimens. An important finding was the importance to perform geometric non-linear analyses for computing SIF and T-stress to find values comparable with literature data and analytical calculations. Taking into account the results obtained on the modelling study, crack path predictions were performed. The best prediction by means of existing criteria was reached by the WEFO-criterion. Different crack paths were predicted for a crack propagating in T-L or L-T directions. However, these predictions were not satisfactorily reliable: the point in the crack path where crack turning should take place was not predicted adequately. Additionally, the crack paths were similar for T L and L-T directions. These deficiencies are related with the definition of the crack path instability. Some literature results have shown that in some experiences the crack behaved in a stable manner even if T > 0. Moreover, WEF and WEFO criteria define crack instability to be related with a material specific distance, rc, but, there is no agreement about its definition. Based on tests, simulation results and observations noted during this work, a compilation criterion was proposed. This is based on the work of Pettit and the normalised T-stress, TR, proposed by Pook. Its reliability was successfully proved on the DCB. The crack path predictions on the CFS were not as satisfactory. But even at its worst the developed criterion was the most accurate.

Page generated in 0.1189 seconds