• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 1
  • Tagged with
  • 20
  • 10
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Deformation problems in Lie groupoids / Problemas de deformação em grupoides de Lie

Cárdenas, Cristian Camilo Cárdenas 20 April 2018 (has links)
In this thesis we present the deformation theory of Lie groupoid morphisms, Lie subgroupoids and symplectic groupoids. The corresponding deformation complexes governing such deformations are defined and used to investigate a Moser argument in each of these contexts. We also apply this theory to the case of Lie group morphisms and Lie subgroups, obtaining rigidity results of these structures. Moreover, in the case of symplectic groupoids, we define a map between the differentiable and deformation cohomology of the underlying groupoid, which is regarded as the global counterpart of a map $i$ defined by Crainic and Moerdijk (2004) which relates the (Poisson) cohomology of the Poisson structure on the base $M$ of the groupoid to the deformation cohomology of the Lie algebroid $T^{*}M$ associated to it. / Nesta tese apresentamos a teoria de deformação de morfismos de grupoides de Lie, subgrupoides de Lie e grupoides simpléticos, definimos os correspondentes complexos de deformação que controlam as deformações destas estruturas, e usamos estes complexos para desenvolver o argumento de Moser em cada um destes contextos. Também aplicamos esta teoria ao caso de morfismos de grupos de Lie e subgrupos de Lie obtendo resultados de rigidez de tais estruturas. Ademais, no caso de grupoides simpléticos, definimos uma função entre a cohomologia diferenciável e a cohomologia de deformação do grupoide, que é interpretada como o análogo global da aplicação $i$ definida por Crainic e Moerdijk (2004) que relaciona a cohomologia de Poisson da estrutura de Poisson induzida na base $M$ do grupoide com a cohomologia de deformação do algebroide de Lie $T^{*}M$ associado à estrutura de Poisson.
12

Representações do grupo de tranças por automorfismos de grupos / Representaciones ddelç grupo de trenzas por automorfismos de grupo

Pizarro, Pavel Jesus Henriquez 16 January 2012 (has links)
A partir de um grupo H e um elemento h em H, nós definimos uma representação : \'B IND. n\' Aut(\'H POT. n\' ), onde \'B IND. n\' denota o grupo de trança de n cordas, e \'H POT. n\' denota o produto livre de n cópias de H. Chamamos a a representação de tipo Artin associada ao par (H, h). Nós também estudamos varios aspectos de tal representação. Primeiramente, associamos a cada trança um grupo \' IND. (H,h)\' () e provamos que o operador \' IND. (H,h)\' determina um grupo invariante de enlaçamentos orientados. Então damos uma construção topológica da representação de tipo Artin e do invariante de enlaçamentos \' IND.(H,h)\' , e provamos que a representação é fiel se, e somente se, h é não trivial / From a group H and a element h H, we define a representation : \' B IND. n\' Aut(\'H POT. n\'), where \'B IND. n\' denotes the braid group on n strands, and \'H POT. n\' denotes the free product of n copies of H. We call the Artin type representation associated to the pair (H, h). Here we study various aspects of such representations. Firstly, we associate to each braid a group \' IND. (H,h)\' () and prove that the operator \' IND. (H,h)\' determines a group invariant of oriented links. We then give a topological construction of the Artin type representations and of the link invariant \' iND. (H,h)\' , and we prove that the Artin type representations are faithful if and only if h is nontrivial
13

Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos / Lie groupoids and Noether\'s theorem in the Lagrangian formalism of classical field theory

Luiz Henrique Pereira Pêgas 12 September 2014 (has links)
O objetivo desta tese é oferecer um arcabouço que permita a modelagem de simetrias em fibrados suaves, que possuam um bom comportamento local. Para tanto, usa-se ferramentas de grupoides de Lie e correlatas, com a finalidade de reduzir, quando possível, simetrias dadas pela ação de um grupo diferenciável, possivelmente de dimensão infinita, sobre um fibrado suave, a problemas em dimensão finita. Uma definição de invariância de uma forma diferencial, definida no espaço total de um fibrado suave, sob a ação de um grupoide de Lie, é apresentada e desenvolvida. A seguir, discute-se estas ferramentas no contexto da formulação lagrangiana da teoria clássica de campos com o objetivo de descrever, simultaneamente, simetrias internas e no espaço-tempo, de maneira unificada. Obtém-se então, nesta linguagem, alguns objetos de estudo centrais da teoria, como os teoremas de Noether e, no caso das teorias de calibre, os teoremas de acoplamento mínimo e Utiyama. Por fim, discute-se brevemente o caso de simetrias a menos de elementos de contato e divergências totais. / The aim of this thesis is to provide a framework that allows the modelling of symmetries in smooth fibre bundles which have good local behaviour. For that, we use Lie groupoids and related tools in order to reduce, whenever possible, symmetries given by the action of a possibly infinite dimensional differentiable group on a smooth fibre bundle to finite dimensional problems. We give a definition of invariance of a differential form, defined on the total space of a fibre bundle, by the action of a Lie groupoid. Then, we discuss these tools in the case of a Lagrangian classical field theory to describe internal and space-time symmetries simultaneously, in a unified way. With this language, we get some central objects of the theory such as Noether\'s theorems and, in the case of gauge theories, the minimal coupling and Utiyama\'s theorems. Lastly, we briefly discuss the case of symmetries up to contact elements and a total divergence.
14

Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos / Lie groupoids and Noether\'s theorem in the Lagrangian formalism of classical field theory

Pêgas, Luiz Henrique Pereira 12 September 2014 (has links)
O objetivo desta tese é oferecer um arcabouço que permita a modelagem de simetrias em fibrados suaves, que possuam um bom comportamento local. Para tanto, usa-se ferramentas de grupoides de Lie e correlatas, com a finalidade de reduzir, quando possível, simetrias dadas pela ação de um grupo diferenciável, possivelmente de dimensão infinita, sobre um fibrado suave, a problemas em dimensão finita. Uma definição de invariância de uma forma diferencial, definida no espaço total de um fibrado suave, sob a ação de um grupoide de Lie, é apresentada e desenvolvida. A seguir, discute-se estas ferramentas no contexto da formulação lagrangiana da teoria clássica de campos com o objetivo de descrever, simultaneamente, simetrias internas e no espaço-tempo, de maneira unificada. Obtém-se então, nesta linguagem, alguns objetos de estudo centrais da teoria, como os teoremas de Noether e, no caso das teorias de calibre, os teoremas de acoplamento mínimo e Utiyama. Por fim, discute-se brevemente o caso de simetrias a menos de elementos de contato e divergências totais. / The aim of this thesis is to provide a framework that allows the modelling of symmetries in smooth fibre bundles which have good local behaviour. For that, we use Lie groupoids and related tools in order to reduce, whenever possible, symmetries given by the action of a possibly infinite dimensional differentiable group on a smooth fibre bundle to finite dimensional problems. We give a definition of invariance of a differential form, defined on the total space of a fibre bundle, by the action of a Lie groupoid. Then, we discuss these tools in the case of a Lagrangian classical field theory to describe internal and space-time symmetries simultaneously, in a unified way. With this language, we get some central objects of the theory such as Noether\'s theorems and, in the case of gauge theories, the minimal coupling and Utiyama\'s theorems. Lastly, we briefly discuss the case of symmetries up to contact elements and a total divergence.
15

Representações do grupo de tranças por automorfismos de grupos / Representaciones ddelç grupo de trenzas por automorfismos de grupo

Pavel Jesus Henriquez Pizarro 16 January 2012 (has links)
A partir de um grupo H e um elemento h em H, nós definimos uma representação : \'B IND. n\' Aut(\'H POT. n\' ), onde \'B IND. n\' denota o grupo de trança de n cordas, e \'H POT. n\' denota o produto livre de n cópias de H. Chamamos a a representação de tipo Artin associada ao par (H, h). Nós também estudamos varios aspectos de tal representação. Primeiramente, associamos a cada trança um grupo \' IND. (H,h)\' () e provamos que o operador \' IND. (H,h)\' determina um grupo invariante de enlaçamentos orientados. Então damos uma construção topológica da representação de tipo Artin e do invariante de enlaçamentos \' IND.(H,h)\' , e provamos que a representação é fiel se, e somente se, h é não trivial / From a group H and a element h H, we define a representation : \' B IND. n\' Aut(\'H POT. n\'), where \'B IND. n\' denotes the braid group on n strands, and \'H POT. n\' denotes the free product of n copies of H. We call the Artin type representation associated to the pair (H, h). Here we study various aspects of such representations. Firstly, we associate to each braid a group \' IND. (H,h)\' () and prove that the operator \' IND. (H,h)\' determines a group invariant of oriented links. We then give a topological construction of the Artin type representations and of the link invariant \' iND. (H,h)\' , and we prove that the Artin type representations are faithful if and only if h is nontrivial
16

Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano / Lie groupoids and the Noether\'s theorem in field theory in the hamiltonian approach

Bruno Tadeu Costa 24 April 2015 (has links)
Neste trabalho, abordamos o conceito de simetria em teoria de campos, no âmbito hamiltoniano mais precisamente, sua relação com leis de conservação, conforme estabelecida pelo(s) teorema(s) de Noether. Propomos uma visão alternativa àquela normalmente usada na literatura, baseada na substituição de grupos e álgebras de Lie por grupoides e algebroides de Lie. Tradicionalmente, dado um fibrado E de configuração sobre o espaço-tempo M (cujas seções são os campos do modelo sob investigação), simetrias são implementadas pela ação de um grupo de automorfismos de E, ou seja, um subgrupo de Aut(E), no espaço &#915 (E) das seções de E, exigindo-se que o funcional ação S seja invariante sob tal ação: neste caso, quando o pertinente subgrupo for de dimensão infinita, surgem graves dificuldades quando queremos tratar de questões de análise e de geometria com rigor matemático. A vantagem principal desta abordagem alternativa provém do fato de que, embora o grupo Aut(E) e, tipicamente, os subgrupos relevantes, assim como o espaço &#915 (E), sejam de dimensão infinita, a sua ação é induzida por uma ação de um grupoide de Lie no fibrado pertinente, a qual envolve apenas variedades de dimensão finita e portanto não há qualquer dúvida em relação a questões tais como qual seria a topologia ou estrutura de variedade subjacente ou em qual sentido essa ação deve ser suave. Formulamos o teorema de Noether neste contexto, baseado em uma nova versão da construção da aplicação momento que a cada gerador de simetrias que associa uma (n - 1)-forma sobre J*E cujo pull-back com uma seção de J* E, que é solução das equações de movimento, produz uma (n - 1)-forma sobre o espaço-tempo, a famosa corrente de Noether, que é conservada, ou seja, fechada / In this thesis, we deal with the concept of symmetry in field theory, in the covariant hamiltonian approach more precisely, its relation with conservation laws, as established by Noethers theorem(s). We propose an alternative view to that normally used in the literature, based on replacing Lie groups and algebras by Lie groupoids and algebroids. Traditionally, given a configuration bundle E over space-time M (whose sections are the fields of the model under investigation), symmetries are implemented by the action of a group of automorphisms of E, i.e., a subgroup of Aut(E), on the space &#915 (E) of sections of E, requiring the action functional S to be invariant under that action: in this case, when the pertinent subgroup has infinite dimension, serious difficulties arise when we want to deal with analytical and geometrical questions with mathematical rigor. The main advantage of this alternative approach comes from the fact that, although the group Aut(E) and, typically, the relevant subgroups, as well as the space &#915 (E), are infinite-dimensional, its action is induced by the action of a Lie groupoid in the pertinent bundle, which involves only finite-dimentional manifolds and therefore there is no doubt about questions such as what should be the topology or the underlying manifold structure or in what sense this action should be smooth. We formulate the Noethers theorem in this context, based on a new version of the construction of the momentum map that associates a (n - 1)-form on J*E to each symmetries generator whose pull-back with a section of J*E, that is solution of the equations of motion, produces a (n - 1)-form on the space-time, the famous Noether current, that is conserved, i.e., closed
17

Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano / Lie groupoids and the Noether\'s theorem in field theory in the hamiltonian approach

Costa, Bruno Tadeu 24 April 2015 (has links)
Neste trabalho, abordamos o conceito de simetria em teoria de campos, no âmbito hamiltoniano mais precisamente, sua relação com leis de conservação, conforme estabelecida pelo(s) teorema(s) de Noether. Propomos uma visão alternativa àquela normalmente usada na literatura, baseada na substituição de grupos e álgebras de Lie por grupoides e algebroides de Lie. Tradicionalmente, dado um fibrado E de configuração sobre o espaço-tempo M (cujas seções são os campos do modelo sob investigação), simetrias são implementadas pela ação de um grupo de automorfismos de E, ou seja, um subgrupo de Aut(E), no espaço &#915 (E) das seções de E, exigindo-se que o funcional ação S seja invariante sob tal ação: neste caso, quando o pertinente subgrupo for de dimensão infinita, surgem graves dificuldades quando queremos tratar de questões de análise e de geometria com rigor matemático. A vantagem principal desta abordagem alternativa provém do fato de que, embora o grupo Aut(E) e, tipicamente, os subgrupos relevantes, assim como o espaço &#915 (E), sejam de dimensão infinita, a sua ação é induzida por uma ação de um grupoide de Lie no fibrado pertinente, a qual envolve apenas variedades de dimensão finita e portanto não há qualquer dúvida em relação a questões tais como qual seria a topologia ou estrutura de variedade subjacente ou em qual sentido essa ação deve ser suave. Formulamos o teorema de Noether neste contexto, baseado em uma nova versão da construção da aplicação momento que a cada gerador de simetrias que associa uma (n - 1)-forma sobre J*E cujo pull-back com uma seção de J* E, que é solução das equações de movimento, produz uma (n - 1)-forma sobre o espaço-tempo, a famosa corrente de Noether, que é conservada, ou seja, fechada / In this thesis, we deal with the concept of symmetry in field theory, in the covariant hamiltonian approach more precisely, its relation with conservation laws, as established by Noethers theorem(s). We propose an alternative view to that normally used in the literature, based on replacing Lie groups and algebras by Lie groupoids and algebroids. Traditionally, given a configuration bundle E over space-time M (whose sections are the fields of the model under investigation), symmetries are implemented by the action of a group of automorphisms of E, i.e., a subgroup of Aut(E), on the space &#915 (E) of sections of E, requiring the action functional S to be invariant under that action: in this case, when the pertinent subgroup has infinite dimension, serious difficulties arise when we want to deal with analytical and geometrical questions with mathematical rigor. The main advantage of this alternative approach comes from the fact that, although the group Aut(E) and, typically, the relevant subgroups, as well as the space &#915 (E), are infinite-dimensional, its action is induced by the action of a Lie groupoid in the pertinent bundle, which involves only finite-dimentional manifolds and therefore there is no doubt about questions such as what should be the topology or the underlying manifold structure or in what sense this action should be smooth. We formulate the Noethers theorem in this context, based on a new version of the construction of the momentum map that associates a (n - 1)-form on J*E to each symmetries generator whose pull-back with a section of J*E, that is solution of the equations of motion, produces a (n - 1)-form on the space-time, the famous Noether current, that is conserved, i.e., closed
18

Teorema de Serre-Swan para grupoides de Lie étale / Serre-Swan\'s theorem for étale Lie groupoids

Conrado, Jackeline 12 December 2016 (has links)
Este trabalho tem dois objetivos principais. O primeiro é estender o Teorema de Serre-Swan para grupoides de Lie étale. O segundo é demonstrar que, se dois grupoides de Lie étale são Morita equivalentes então a categoria dos módulos sobre as álgebras de convolução destes grupoides são equivalentes, e esta equivalência preserva a subcategoria dos módulos de tipo finito e posto constante. / In this work we have two main goals. The first one is to extend the Serre-Swan\'s theorem. Our second goal is to prove, if two étale Lie groupoids are Morita equivalence then the category of modules over its convolution algebra are Morita equivalence, and this equivalence preserve the subcategory of modules of finite type and of constant rank.
19

Uma generalização de pseudogrupo estruturas / A generalization of pseudogroup structures

Genaro Pablo Zamudio Chauca 20 April 2018 (has links)
Já é bem estabelecido na geometria diferencial o uso de fibrados principais com grupo de estru- tura para a definição e o estudo de algumas estruturas geométricas na base do fibrado. O uso de fibrados principais com grupoide de estrutura na definição de estruturas geométricas sobre varieda- des não tem sido muito explorada. O único exemplo do uso desses fibrados para definir estruturas geométricas foi dado Haefliger. Ele mostrou que folheações regulares sobre uma variedade estão em correspondência com uma classe de fibrados principais com grupoide de estrutura, e usando a classificação de fibrados principais ele obtive a classificação de folheações regulares a menos de homotopia sobre uma variedade aberta. Neste trabalho propomos uma definição a qual generaliza as folheações regulares para produzir uma classe de fibrados vetoriais ancorados e provamos para eles um teorema de classificação no espirito do teorema de Haefliger. Depois aplicamos a teoria desenvolvida aos grupoides com formas multiplicativas e mostramos como a nossa definição per- mite trasladar a geometria guardada na forma multiplicativa para a base do fibrado principal. Em seguida voltamos para o caso de folheações regulares e mostramos que a nossa proposta permite incluir novas estruturas transversais à folheação. / It is well know in differencial geometry the use of principal bundles with structure group to define and study some geometric structures on the base of the bundle. The use of principal bun- dle with a structure groupoid has not been extensively studied yet. The only example using this kind of bundle was provided by Haefliger in his study of regular foliations. Haefliger showed that regular foliations can be identified with some class of principal bundles with structure groupoid, then by using the classifying theorem of principal bundles he arrived to the classification theorem of regular foliations up to homotopy on open manifolds. In this work we will propose a definition that generalizes regular foliations to include anchored vector bundles and, will prove a classification theorem for these structures in the spirit of Haefligers theorem. Then we will apply this theory to groupoids with multiplicative forms and show that our definition permits to transfer the geometry encoded in the multiplicative form to the base of the bundle. Then we will back to the case of regular foliations and show that our proposal allow new transversal structures to the foliation.
20

Uma generalização de pseudogrupo estruturas / A generalization of pseudogroup structures

Chauca, Genaro Pablo Zamudio 20 April 2018 (has links)
Já é bem estabelecido na geometria diferencial o uso de fibrados principais com grupo de estru- tura para a definição e o estudo de algumas estruturas geométricas na base do fibrado. O uso de fibrados principais com grupoide de estrutura na definição de estruturas geométricas sobre varieda- des não tem sido muito explorada. O único exemplo do uso desses fibrados para definir estruturas geométricas foi dado Haefliger. Ele mostrou que folheações regulares sobre uma variedade estão em correspondência com uma classe de fibrados principais com grupoide de estrutura, e usando a classificação de fibrados principais ele obtive a classificação de folheações regulares a menos de homotopia sobre uma variedade aberta. Neste trabalho propomos uma definição a qual generaliza as folheações regulares para produzir uma classe de fibrados vetoriais ancorados e provamos para eles um teorema de classificação no espirito do teorema de Haefliger. Depois aplicamos a teoria desenvolvida aos grupoides com formas multiplicativas e mostramos como a nossa definição per- mite trasladar a geometria guardada na forma multiplicativa para a base do fibrado principal. Em seguida voltamos para o caso de folheações regulares e mostramos que a nossa proposta permite incluir novas estruturas transversais à folheação. / It is well know in differencial geometry the use of principal bundles with structure group to define and study some geometric structures on the base of the bundle. The use of principal bun- dle with a structure groupoid has not been extensively studied yet. The only example using this kind of bundle was provided by Haefliger in his study of regular foliations. Haefliger showed that regular foliations can be identified with some class of principal bundles with structure groupoid, then by using the classifying theorem of principal bundles he arrived to the classification theorem of regular foliations up to homotopy on open manifolds. In this work we will propose a definition that generalizes regular foliations to include anchored vector bundles and, will prove a classification theorem for these structures in the spirit of Haefligers theorem. Then we will apply this theory to groupoids with multiplicative forms and show that our definition permits to transfer the geometry encoded in the multiplicative form to the base of the bundle. Then we will back to the case of regular foliations and show that our proposal allow new transversal structures to the foliation.

Page generated in 0.0369 seconds