• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

2D CFD Simulation of a Circulation Control Inlet Guide Vane

Hill, Hugh Edward 05 February 2007 (has links)
This thesis presents the results of two 2-D computational studies of a circulation control Inlet Guide Vane (IGV) that takes advantage of the Coanda effect for flow vectoring. The IGV in this thesis is an uncambered airfoil that alters circulation around itself by means of a Coanda jet that exhausts along the IGV's trailing edge surface. The IGV is designed for an axial inlet flow at a Mach number of 0.54 and an exit flow angle of 11 degrees. These conditions were selected to match the operating conditions of the 90% span section of the IGV of the TESCOM compressor rig at the Compressor Aero Research Laboratory (CARL) located at Wright-Patterson AFB. Furthermore, using the nominal chord (length from leading edge of the IGV to the jet exit) for the length scale, the Reynolds number for the circulation control IGV in this region was 5e⁵. The first study was a code and turbulence model comparison, while the second study was an optimization study which determined optimal results for parameters that affected circulation around the IGV. Individual abstracts for the two studies are provided below. To determine the effect of different turbulence models on the prediction of turning angles from the circulation control IGV, the commercial code GASP was employed using three turbulence models. Furthermore, to show that the results from the optimization study were code independent a code comparison was completed between ADPAC and GASP using the Spalart-Allmaras turbulence model. Turbulence models employed by GASP included: two isotropic turbulence models, the one equation Spalart-Allmaras and the two-equation Wilcox 1998 k-&#969;. The isotropic models were then compared to the non-isotropic stress transport model Wilcox 1998 Stress-&#969;. The results show good comparison between turning angle trends and pressure loss trends for a range of blowing rates studied at a constant trailing edge radius size. When the three turbulence models are compared for a range of trailing edge radii, the models were in good agreement when the trailing edge is sufficiently large. However, at the smallest radius, isotropic models predict the greatest amount of circulation around the IGV that may be caused by the prediction of transonic flow above the Coanda surface. The optimization study employed the CFD code ADPAC in conjunction with the Spalart-Allmaras turbulence model to determine the optimal jet height, trailing edge radius, and supply pressure that would meet the design criteria of the TESCOM (TESt COMpressor) rig while minimizing the mass flow rate and pressure losses. The optimal geometry that was able to meet the design requirements had a jet height of h/C<sub>n</sub> = 0.0057 and a trailing edge Radius R/C<sub>n</sub> = 0.16. This geometry needed a jet to inflow total pressure ratio of 1.8 to meet the exit turning angle requirement. At this supply pressure ratio the mass flow rate required by the flow control system was 0.71 percent of the total mass flow rate through the engine. The optimal circulation control IGV had slightly lower pressure losses when compared to the cambered IGV in the TESCOM rig. / Master of Science
2

Evaluation and Modification of Airflow Pattern and Contaminant Diffusion in Semiconductor Wet Bench

Lin, Chih-Hung 14 July 2000 (has links)
­^¤åºK­n In the wet wafer cleaning process, the wafer surfaces are washed with toxic solutions such as ammonia and sulfuric acid which was not to allow to enter the surroundings i.e. clean room. Therefore, common practice is to reduce the pressure differential between the wet bench and the surroundings to a very low pressure difference level while maintaining a high exhaust flow rate for toxic fumes. In such a case, the isolation of process area from the surrounding area may be compromised i.e. there is a danger that the surrounding air was suctioned to the process area. Conceptually, this dilemma can be solved by creating an air buffer between the wafer process area and the surrounding area. This study aims to determine/prove-in the optimal operational conditions and geometries of such design by both CFD analysis and experimental verification. This thesis includes three parts. First, the detailed experimental data to a bio-clean bench installed with the guide-vane design are conducted. The data are then used to verify the feasibility/accuracy of the CFD model. Second, the optimal operational conditions and geometries of a full-scale isothermal wet bench with the guide-vane design are determined by CFD simulation that takes most influential factors into account. These influential factors include exhaust pressures, length of the guide- vane, guide-vane angle and downward face velocity of the filter etc. The results show that the air curtain created by the guide-vane is able to isolate the process area from surrounding area, and vise-versa. Third, the thermal effect of ammonia solution on the distribution of ammonia vapor are examined. The shape of the thermal plume that encounters the downward air stream of the filter is discussed intensively. In general, this thesis provides significant information in improving the isolation effect of wet benches by the air-curtain design.
3

Effects of Flow Control on the Aerodynamics of a Tandem Inlet Guide Vane

Vandeputte, Thomas William 22 January 2000 (has links)
An aerodynamic investigation was performed to assess the effectiveness of combined boundary layer suction and trailing edge blowing at reducing the blade profile losses and the wake momentum deficit of a cascade of tandem IGV's operating at realistic flow conditions. Two trailing edge blowing designs were tested: metal-angle blowing, which oriented the blowing jets very near to the blade exit angle, and deviation-angle blowing, which oriented the blowing jets at a significant deviation angle from the blade exit angle. Both blowing designs used the same boundary layer suction arrangement. A linear cascade of five IGV's was tested with a flap deflection angle of 40 degrees and an inlet Mach number of 0.3. The Reynolds number based on the overall IGV chord length for these experiments was greater than 500,000. The inlet and exit angles of the IGV at this flap setting were 0 degrees and 55 degrees, respectively. Tests performed with no flow control showed significant suction surface flow separation that generated large wakes with high losses and large momentum deficits. The application of boundary layer suction reduced the baseline pressure loss coefficient and wake momentum thickness by 22%. A suction mass flow of 0.4% of the passage flow was used to obtain these results. The addition of metal-angle blowing with the suction resulted in total reductions of 48% and 38% for the pressure loss coefficient and wake momentum thickness. A blowing mass flow of 3.1% of the passage flow was used in addition to 0.4% suction mass flow to obtain these results. The application of the deviation-angle blowing was detrimental to the aerodynamics of the IGV, as both the pressure loss coefficient and wake momentum thickness increased slightly over their suction-only values. This was attributed to a manufacturing defect which distorted the flow of the blowing jet. The results of the deviation-angle blowing experiments were not considered representative of the design intent and reinforced the importance of the hole design for creating a proper blowing jet. While low speed tests of this cascade showed results and trends very similar to those of previous research, the application of flow control proved to be less effective at higher speeds due to the generation of significantly larger wakes. / Master of Science
4

ON SIMULATING COMPRESSIBLE FLOWS WITH A DENSITY BASED SOLVER

Chandramouli, Sathyanarayanan January 2016 (has links)
A coupled density based solver in the framework of foam-extend is used to perform simulations of transonic flows. The solver is based on an explicit and time-accurate algorithm and is coupled to a compressible Unsteady Reynolds-Averaged Navier-Stokes (URANS) and a Large Eddy Simulation (LES) module. The solver is first attested on canonical compressible flow scenarios such as a 1-D shock tube and the transonic flow through a 2-D channel. Following this, a 2-D URANS simulation of the flow within the passages of a High Pressure Turbine Nozzle Guide Vane (HPT-NGV) is performed and compared against experimental data. Finally, preliminary results of a 3-D LES on a simplified geometry of the HPT-NGV are presented. In the future, this numerical setup will be used to study indirect combustion noise in aircraft engines.
5

Investigation of Inlet Guide Vane Wakes in a F109 Turbofan Engine with and without Flow Control

Kozak, Jeffrey D. 14 September 2000 (has links)
A series of experiments were conducted in a F109 turbofan engine to investigate the unsteady wake profiles of an Inlet Guide Vane (IGV) at a typical spacing to the downstream fan at subsonic and transonic relative blade velocities. The sharp trailing-edge vanes were designed to produce a wake profile consistent with modern IGV. Time averaged baseline measurements were first performed with the IGV located upstream of the aerodynamic influence of the fan. Unsteady experiments were performed with an IGV-fan spacing of 0.43 fan chords. High-frequency on-vane pressure measurements showed strong peak-to-peak amplitudes at the blade passing frequency (BPF) of 4.7 psi at the transonic fan speeds. High-frequency total pressure measurements of the IGV wake were taken between the IGV and fan. Results showed that the total pressure loss coefficient of the time averaged IGV wake is reduced by 30% for the subsonic fan, and increased by a factor of 2 for the transonic fan compared to the baseline. Time resolved wake profiles for subsonic fan speeds show constructive and destructive interactions over each blade pass generated by the fan potential flow field. Time resolved wake profiles for the transonic fan speeds show that shock interactions with the IGV surface result in the wake shedding off of the vane at the BPF. Furthermore, the effectiveness of trailing edge blowing (TEB) flow control was investigated. TEB is the method of injecting air aft of the IGV to reduce the low pressure regions (deficits) in the viscous wakes shed by the vanes. Minimizing the IGV wakes reduces the forcing function on the downstream fan blades, thereby reducing high cycle fatigue. The TE span of the vane contains discrete holes at the axial centerline for TEB. Baseline results showed that TEB eliminates the IGV wake, while using only 0.03% of the total engine mass flow per IGV. TEB for the subsonic fan at the close spacing shows complete wake filling using the same mass flow as the baseline. TEB for the transonic fan shows a reduction of 68% in the total pressure loss coefficient, while requiring 2.5 times the mass flow as the baseline. / Ph. D.
6

Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane

Saha, Ranjan January 2014 (has links)
Efficiency improvement in turbomachines is an important aspect in reducing the use of fossil-based fuel and thereby reducing carbon dioxide emissions in order to achieve a sustainable future. Gas turbines are mainly fossil-based turbomachines powering aviation and land-based power plants. In line with the present situation and the vision for the future, gas turbine engines will retain their central importance in coming decades. Though the world has made significant advancements in gas turbine technology development over past few decades, there are yet many design features remaining unexplored or worth further improvement. These features might have a great potential to increase efficiency. The high pressure turbine (HPT) stage is one of the most important elements of the engine where the increased efficiency has a significant influence on the overall efficiency as downstream losses are substantially affected by the prehistory. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage.   Hence, this study has been incorporated into a research project that investigates leading edge contouring near endwall by fillet and external cooling on a nozzle guide vane with a common goal to contribute to the development of the HPT stage. In the search for HPT stage efficiency gains, leading edge contouring near the endwall is one of the methods found in the published literature that showed a potential to increase the efficiency by decreasing the amount of secondary losses. However, more attention is necessary regarding the realistic use of the leading edge fillet. On the other hand, external cooling has a significant influence on the HPT stage efficiency and more attention is needed regarding the aerodynamic implication of the external cooling. Therefore, the aerodynamic influence of a leading edge fillet and external cooling, here film cooling at profile and endwall as well as TE cooling, on losses and flow field have been investigated in the present work. The keystone of this research project has been an experimental investigation of a modern nozzle guide vane using a transonic annular sector cascade. Detailed investigations of the annular sector cascade have been presented using a geometric replica of a three dimensional gas turbine nozzle guide vane. Results from this investigation have led to a number of new important findings and also confirmed some conclusions established in previous investigations to enhance the understanding of complex turbine flows and associated losses.   The experimental investigations of the leading edge contouring by fillet indicate a unique outcome which is that the leading edge fillet has no significant effect on the flow and secondary losses of the investigated nozzle guide vane. The reason why the leading edge fillet does not affect the losses is due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. The investigation of the external cooling indicates that a coolant discharge leads to an increase of profile losses compared to the uncooled case. Discharges on the profile suction side and through the trailing edge slot are most prone to the increase in profile losses. Results also reveal that individual film cooling rows have a weak mutual effect. A superposition principle of these influences is followed in the midspan region. An important finding is that the discharge through the trailing edge leads to an increase in the exit flow angle in line with an increase of losses and a mixture mass flow. Results also indicate that secondary losses can be reduced by the influence of the coolant discharge. In general, the exit flow angle increases considerably in the secondary flow zone compared to the midspan zone in all cases. Regarding the cooling influence, the distinct change in exit flow angle in the area of secondary flows is not noticeable at any cooling configuration compared to the uncooled case. This interesting zone requires an additional, accurate study. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the suction surfaces and does not reach the pressure side of the hub surface, leaving it less protected from the hot gas. This indicates a strong interaction of the secondary flow and cooling showing that the influence of the secondary flow cannot be easily influenced.   The overall outcome enhances the understanding of complex turbine flows, loss behaviour of cooled blade, secondary flow and interaction of cooling and secondary flow and provides recommendations to the turbine designers regarding the leading edge contouring and external cooling. Additionally, this study has provided to a number of new significant results and a vast amount of data, especially on profile and secondary losses and exit flow angles, which are believed to be helpful for the gas turbine community and for the validation of analytical and numerical calculations. / Ökad verkningsgrad i turbomaskiner är en viktig del i strävan att minska användningen av fossila bränslen och därmed minska växthuseffekten för att uppnå en hållbar framtid. Gasturbinen är huvudsakligen fossilbränslebaserad, och driver luftfart samt landbaserad kraftproduktion. Enligt rådande läge och framtidsutsikter bibehåller gasturbinen denna centrala roll under kommande decennier. Trots betydande framsteg inom gasturbinteknik under de senaste årtionden finns fortfarande många designaspekter kvar att utforska och vidareutveckla. Dessa designaspekter kan ha stor potential till ökad verkningsgrad. Högtrycksturbinsteget är en av de viktigaste delarna av gasturbinen, där verkningsgraden har betydande inverkan på den totala verkningsgraden eftersom förluster kraftigt påverkas av tidigare förlopp. Huvudsyftet med denna studie är att bidra till verkningsgradsförbättringar i högtrycksturbinsteget.   Studien är del i ett forskningsprojekt som undersöker ledskenans framkantskontur vid ändväggarna samt extern kylning, i jakten på dessa förbättringar. Den aerodynamiska inverkan av en förändrad geometri vid ledskenans ändväggar har i tidigare studier visat potential för ökad verkningsgrad genom minskade sekundärförluster. Ytterligare fokus krävs dock, med användning av en rimlig hålkälsradie. Samtidigt har extern kylning i form av filmkylning stor inverkan på verkningsgraden hos högtrycksturbinsteget och forskning behövs med fokus på den aerodynamiska inverkan. Av denna anledning studeras här inverkan både av ändrad hålkälsradie vid ledskenans framkant samt extern kylning i form av filmkylning av skovel, ändvägg och bakkant på aerodynamiska förluster och strömningsfält. Huvudpelaren i detta forskningsprojekt har varit en experimentell undersökning av en geometrisk replika av en modern tredimensionell gasturbinstator i en transonisk annulärkaskad. Detaljerade undersökningar i annulärkaskaden har gett betydande resultat, och bekräftat vissa tidigare studier. Detta har lett till ökad förståelsen för de komplexa flöden och förluster som karakteriserar gasturbiner.   De experimentella undersökningarna av förändrad framkantsgeometri leder till den unika slutsatsen att den modifierade hålkälsradien inte har någon betydande inverkan på strömningsfältet eller sekundärförluster av den undersökta ledskenan. Anledningen till att förändringen inte påverkar förlusterna är i detta fall den tredimensionella karaktären hos ledskenan med en redan existerande typisk framkantsgeometri. Undersökningarna visar också att de komplexa sekundärströmningarna är kraftigt beroende av det inkommande gränsskiktet. Undersökning av extern kylning visar att kylflödet leder till en ökad profilförlust. Kylflöde på sugsidan samt bakkanten har störst inverkan på profilförlusten. Resultaten visar också att individuella filmkylningsrader har liten påverkan sinsemellan och kan behandlas genom en superpositionsprincip längs mittsnittet. En viktig slutsats är att kylflöde vid bakkanten leder till ökad utloppsvinkel tillsammans med ökade förluster och massflöde. Resultat tuder på att sekundärströmning kan minskas genom ökad kylning. Generellt ökar utloppsvinkeln markant i den sekundära flödeszonen jämfört med mittsnittet för alla undersökta fall. Den kraftiga förändringen i utloppsvinkel är dock inte märkbar i den sekundära flödeszonen i något av kylfallen jämfört med de okylda referensfallet. Denna zon fordrar ytterligare studier. Spårgasundersökning av ledskenan med koldioxid (CO2) visar att plattformskylning uppströms ledskenan koncentreras till skovelns sugsida, och når inte trycksidan som därmed lämnas mer utsatt för het gas. Detta påvisar den kraftiga interaktionen mellan sekundärströmning och kylflöden, och att inverkan från sekundärströmningen ej enkelt kan påverkas. De generella resultaten från undersökningen ökar förståelsen av komplexa turbinflöden, förlustbeteenden för kylda ledskenor, interaktionen mellan sekundärströmning och kylflöden, och ger rekommendationer för turbinkonstruktörer kring förändrad framkantsgeometri i kombination med extern kylning. Dessutom har studien gett betydande resultat och en stor mängd data, särskilt rörande profil- och sekundärförluster och utloppsvinkel, vilket tros kunna vara till stor hjälp för gasturbinssamfundet vid validering av analytiska och numeriska beräkningar. / <p>QC 20140909</p> / Turbopower, Sector rig
7

Experimental loss measurements in an annular sector cascade at supersonic exit velocities

Lilienberg, László January 2016 (has links)
Efficiency improvement is one of the most important aspects of engineering and especially important in the field of energy production. In the past decades, energy was mostly produced by fossil based technologies involving turbomachines, and the efficiency of these machines nearly quadrupled since the introduction of the first economically viable gas turbines. The progress continues, as there are still areas where improvement can be made. Such area is the High Pressure Turbine stage (HPT), which influences the flow characteristics and losses downstream, which this thesis will examine in more detail. In the open literature it can be found that one of the areas with potential for progress is the external cooling of the nozzle guide vanes (NGV) of the HPT stage. However not many studies go towards supersonic exit velocities even though that is the most common trend followed by the industry these days. The external cooling allows the turbine entry temperature (TET) to go beyond the melting point of the blade material thus increase Carnot efficiency but in the meantime influences the flow characteristics and losses. To understand these influences of the cooling, experiments in an annular sector cascade (ASC) were conducted with exit velocities from Mach 0.95 to 1.2 without and with cooling applied. The findings of the experiments are believed to help the more detailed understanding of the flow behaviour at high exit velocities. When comparing the corresponding runs in the two cases it became obvious that with cooling applied the deviation of the exit flow angle is generally smaller than in the uncooled case. This might be a highly important design feature for designers to work with. From the available data it was concluded that the total pressure distribution across the span is not significantly affected with the introduction of cooling.
8

Aerodynamic Loss Co-Relations and Flow- Field Investigations of a Transonic Film- Cooled Nozzle Guide Vane

Leung, Pak Wing January 2015 (has links)
Over the last two decades, most developed countries have reached a consensus that greener energy production is necessary for the world, due to the climate changes and limited fossil fuel resources. More efficient turbine is desirable and can be archived by higher turbine-inlet temperature (TIT). However, it is difficult for nozzle guide vane (NGV), which is the first stage after combustion chamber, to withstand a very high temperature. Thus, cooling methods such as film cooling have to be implemented. Film-cooled NGV of an annular sector cascade (ASC) is studied in this thesis, for getting comprehensive calculation of vorticity, and analyzing applicability of existing loss models, namely Hartsel model and Young &amp; Wilcock model. The flow-field calculation methods from previously published studies are reviewed. Literatures focusing on Hartsel model and Young &amp; Wilcock model are studied. Measurement data from previously published studies are analyzed and compared with the loss models. In order to get experience of how measurements take place, participation of a test run experiment is involved. Calculation of flow vector has been evaluated and modified. Actual flow angle is introduced when calculating velocity components. Thus, more exact results are obtained from the new method. Calculation of vorticity has been evaluated and made more comprehensive. Vorticity components as well as magnitude of total streamwise vorticity are calculated and visualized. Vorticity is higher and more extensive for fully cooled case than uncooled case. Highest vorticity is found at regions near the hub, tip and TE. Axial and circumferential vorticities show similar patterns, while the radial vorticity is relatively simpler. Compressibility is introduced as a new method when calculating circumferential and radial vorticities, resulting more extensive and higher vorticities than results from incompressible solutions. Hartsel model and Young &amp; Wilcock model have been evaluated and compared to the ASC to see the applicability of the models. In general, Hartsel model cannot agree with the ASC to a satisfactory level and thus cannot be applied. Coolant velocity is found to be the dominant factor of Hartsel model. Young &amp; Wilcock model may match SS1 and SS2 cases, or even PS and SH4 cases, but cannot match TE case. The applicability of Young &amp; Wilcock model is much dependent on the location of cooling rows.
9

An Experimental Investigation of Varied IGV Stagger Angle Effects on a High-Pressure Compressor

Amanda Beach (15183997) 05 April 2023 (has links)
<p>  </p> <p>The focus of this work was to characterize the overall performance effects due to altering the stagger angle of a variable inlet guide vane (VIGV) on a multistage axial compressor. Data were collected from the Purdue three-stage axial compressor (P3S). The stagger angle from the VIGV was varied thrice from the baseline configuration in increments of 5 degrees resulting in four configurations with angles of 4 deg, 9 deg, 14 deg, and 19, where the baseline configuration was 9 degrees. </p> <p>Compressor performance data were collected and analyzed for each stagger angle configuration along three corrected speeds (68%, 80%, 100%). Each speedline consisted of approximately six loading conditions for which the corrected mass flow rate was matched for each configuration to allow for a basis of comparison among the configurations. Stalling mass flow rates and stall inception were also investigated. Total pressure and total temperature rakes were installed throughout the compressor to investigate the performance at interstage locations for each loading condition. In addition to the rakes, static pressure taps were distributed along the compressor and unsteady pressure measurements were distributed circumferentially. Capacitance probes were installed over each of the three rotors to evaluate rotor tip clearance measurements during the tests. The effects of the stagger angle on the stability margin of the compressor were also characterized. Each speedline presented, thus, includes a representative stall point in addition to the six loading conditions where detailed flow field traverses were conducted. </p> <p>The results of this investigation showed that while the total pressure ratio (TPR) increased as the stagger angle decreased, the stability margin was reduced. The opposite trend was observed with a decrease in overall TPR across the compressor and an increase in stability margin for increased stagger angles. Based on findings from previous authors, this trend was anticipated. A similar metric for monitoring compressor performance is isentropic efficiency. This investigation utilized both temperature-based and torque-based isentropic efficiency. The greatest effect of the VIGV stagger angle on compressor isentropic efficiency occurred at the lowest loading conditions, and there was no discernible impact on isentropic efficiency at high loading conditions for this case. As VIGVs typically have the greatest impact on off-design conditions, this trend was expected. The varied stagger angle configurations had no discernible effect on the type of stall inception mechanism experienced by the compressor. The primary effect on stall that was consistent across the configurations was a noticeable increase in the duration and strength of modal oscillations present throughout the compressor with increased stagger angles, indicating an increase in stability. </p> <p>The data collected and presented herein provide a unique, robust dataset to improve understanding of the effects of changing stagger angles on variable inlet guide vanes on multistage axial compressors. These data correspondingly provide a unique training set and validation method for predictive technology. </p>
10

Gestaltung von Radialspalt- und Seitenwandgeometrien an verstellbaren Axialverdichterstatoren

Gottschall, Marcel 08 August 2023 (has links)
Wirkungsgradsteigerungen moderner Turbomaschinen machen dort auch zukünftig verstellbare Leitschaufeln unverzichtbar. Infolge komplexer Ringraumgeometrie entstehen bei der Schaufelverstellung betriebspunktabhängige Radialspalte, welche hinsichtlich Effizienzoptimierungen eine zunehmende Rolle spielen. Die vorliegende Arbeit charakterisiert die aerodynamischen Mechanismen und das Potential von spezifischen radialen Teilspalt- und Seitenwandkonturgeometrien solcher Verstellstatoren. Anders als bei durchgehenden radialen Spalten variiert der Einfluss der Teilspalte abhängig von deren axialer Position. Ein Teilspalt im hinteren Schaufelsehnenbereich erreicht reduzierte Totaldruckverluste gegenüber einer spaltfreien Referenz- beschaufelung. Dieser Vorteil vergrößert sich mit steigender Gitterbelastung und erhöht sich nochmals im Vergleich mit Konfigurationen eines vorderen Teilspaltes. Die Ergebnisse zei- gen, dass die Position entlang der Sehne der wesentliche Ein- flussfaktor auf die Radialspaltcharakteristik ist, die Spaltlänge als auch deren radiale Variation spielen nur eine untergeordnete, quantitative Rolle. Auch die untersuchten modellhaften Seitenwandkonturen wirken sich aufgrund sekundärer geome- trischer Einflüsse positiv auf Verlust und Gitterumlenkung in der Abströmung aus. Reduzierte Abmessungen der Teilspalte schwächen auch charakteristische Periodizitäten in Verbindung mit Spaltströmung bzw. resultierendem Spaltwirbel ab. Diese Erkenntnisse erlauben aerodynamische Optimierungen der Geometrie eines spezifischen Statordesigns. Ebenso ergibt sich ein Anwendungspotential im Randbereich starrer Leitschaufeln.

Page generated in 0.0493 seconds