• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 36
  • 11
  • 9
  • 7
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 178
  • 77
  • 58
  • 45
  • 40
  • 38
  • 32
  • 30
  • 27
  • 23
  • 17
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Controle digital de uma planta giroscópio. / Digital control of a gyroscope plant.

Fabio Yukio Toriumi 05 August 2016 (has links)
Esta dissertação apresenta a modelagem matemática de um giroscópio de controle de momento (CMG) e aplica técnicas de controle digital para o controle de atitude dessa planta. CMGs são atuadores importantes para o controle de atitude de corpos no espaço, tais como satélites e veículos espaciais. Desenvolve-se a modelagem da planta por meio da mecânica Lagrangiana e estudam-se técnicas específicas de controle PID (proporcional-integral-derivativo) e LQR (linear-quadratic regulator ) digitais para aplicação em sistemas com a planta nas configurações desacoplada e acopladas de fase mínima e não-mínima. Realizam-se ensaios via simulação, com o modelo não-linear da planta, bem como via experimentos práticos, com o sistema real, para validar os controladores projetados. Com isso, obtêm-se resultados positivos com ambas as técnicas estudadas, com exceção ao caso acoplado de fase não-mínima, para o qual uma das técnicas não foi capaz de controlar a atitude da planta. / This dissertation presents the mathematical modeling of a control moment gyroscope (CMG) and applies digital control techniques for its attitude control. CMGs are important actuators for bodies attitude control in the space, such as satellites and space vehicles. The system modeling is developed with the Lagrangian mechanics and a digital proportionalintegral- derivative (PID) and a digital linear-quadratic regulator (LQR) control techniques are studied and applied to a decoupled system and coupled systems with minimum and non-minimum phases. Simulation tests with the non-linear plant model and experimental tests with the real plant are done in order to validate the control techniques. Then, positive results are reached with both studied techniques, excepting in the coupled system with non-minimum phase, in which one technique was not able to control it.
122

Context Aware Reminder System : Activity Recognition Using Smartphone Accelerometer and Gyroscope Sensors Supporting Context-Based Reminder Systems / Context Aware Reminder System : Activity Recognition Using Smartphone Accelerometer and Gyroscope Sensors Supporting Context-Based Reminder Systems

Ahmed, Qutub Uddin, Mujib, Saifullah Bin January 2014 (has links)
Context. Reminder system offers flexibility in daily life activities and assists to be independent. The reminder system not only helps reminding daily life activities, but also serves to a great extent for the people who deal with health care issues. For example, a health supervisor who monitors people with different health related problems like people with disabilities or mild dementia. Traditional reminders which are based on a set of defined activities are not enough to address the necessity in a wider context. To make the reminder more flexible, the user’s current activities or contexts are needed to be considered. To recognize user’s current activity, different types of sensors can be used. These sensors are available in Smartphone which can assist in building a more contextual reminder system. Objectives. To make a reminder context based, it is important to identify the context and also user’s activities are needed to be recognized in a particular moment. Keeping this notion in mind, this research aims to understand the relevant context and activities, identify an effective way to recognize user’s three different activities (drinking, walking and jogging) using Smartphone sensors (accelerometer and gyroscope) and propose a model to use the properties of the identification of the activity recognition. Methods. This research combined a survey and interview with an exploratory Smartphone sensor experiment to recognize user’s activity. An online survey was conducted with 29 participants and interviews were held in cooperation with the Karlskrona Municipality. Four elderly people participated in the interview. For the experiment, three different user activity data were collected using Smartphone sensors and analyzed to identify the pattern for different activities. Moreover, a model is proposed to exploit the properties of the activity pattern. The performance of the proposed model was evaluated using machine learning tool, WEKA. Results. Survey and interviews helped to understand the important activities of daily living which can be considered to design the reminder system, how and when it should be used. For instance, most of the participants in the survey are used to using some sort of reminder system, most of them use a Smartphone, and one of the most important tasks they forget is to take their medicine. These findings helped in experiment. However, from the experiment, different patterns have been observed for three different activities. For walking and jogging, the pattern is discrete. On the other hand, for drinking activity, the pattern is complex and sometimes can overlap with other activities or can get noisy. Conclusions. Survey, interviews and the background study provided a set of evidences fostering reminder system based on users’ activity is essential in daily life. A large number of Smartphone users promoted this research to select a Smartphone based on sensors to identify users’ activity which aims to develop an activity based reminder system. The study was to identify the data pattern by applying some simple mathematical calculations in recorded Smartphone sensors (accelerometer and gyroscope) data. The approach evaluated with 99% accuracy in the experimental data. However, the study concluded by proposing a model to use the properties of the identification of the activities and developing a prototype of a reminder system. This study performed preliminary tests on the model, but there is a need for further empirical validation and verification of the model. / +46707560843
123

Which Method Detects Foot Strike in Rearfoot and Forefoot Runners Accurately when Using an Inertial Measurement Unit?

Mitschke , Christian, Heß, Tobias, Milani, Thomas L. 02 October 2017 (has links) (PDF)
Accelerometers and gyroscopes are used to detect foot strike (FS), i.e., the moment when the foot first touches the ground. However, it is unclear whether different conditions (footwear hardness or foot strike pattern) influence the accuracy and precision of different FS detection methods when using such micro-electromechanical sensors (MEMS). This study compared the accuracy of four published MEMS-based FS detection methods with each other and the gold standard (force plate) to establish the most accurate method with regard to different foot strike patterns and footwear conditions. Twenty-three recreational runners (12 rearfoot and 11 forefoot strikers) ran on a 15-m indoor track at their individual running speed in three footwear conditions (low to high hardness). MEMS and a force plate were sampled at a rate of 3750 Hz. Individual accuracy and precision of FS detection methods were found which were dependent on running styles and footwear conditions. Most of the methods were characterized by a delay which generally increased from rearfoot to forefoot strike pattern and from high to low midsole hardness. It can be concluded that only one of the four methods can accurately determine FS in a variety of conditions.
124

A Single Gyroscope Can Be Used to Accurately Determine Peak Eversion Velocity during Locomotion at Different Speeds and in Various Shoes

Mitschke, Christian, Öhmichen, Matthias, Milani, Thomas L. 10 July 2017 (has links) (PDF)
Gyroscopes have been used in previous studies to measure the peak angular velocity of the shoe or foot in the frontal plane (evVel). However, it is not clear whether different test conditions (footwear hardness or locomotion speed) can influence the accuracy of evVel. The purpose of the present study was to compare the accuracy of gyroscopes and electrogoniometers when measuring evVel and the time until evVel (t_evVel) in 12 different conditions using a single axis gyroscope attached to the heel cap. Twenty-four recreational runners were instructed to walk and run on a 15-m indoor track at four locomotion speeds (1.5, 2.5, and 3.5 m/s, and individual running speed) and in three footwear conditions (low to high hardness). The gyroscope data and electrogoniometer data were sampled at a rate of 1000 Hz. Comparisons between both measurement devices showed small mean differences up to 49.8 ± 46.9 deg/s for evVel and up to 5.3 ± 3.5 ms for t_evVel. Furthermore, strong relationships between gyroscope and electrogoniometer data were found for evVel as well as for t_evVel for all conditions. It can be concluded that gyroscopes can be used to accurately determine evVel and t_evVel under a variety of conditions.
125

Rozpoznání dopravních prostředků pomocí signálů snímaných chytrým telefonem / Recognition of vehicles using signals sensed by smartphone

Nevěčná, Leona January 2018 (has links)
Thanks to the development in recent years, the placement of miniaturized sensors such as accelerometers, gyroscopes, magnetometers, global positioning system receivers (GPS), microphones or others to commercially sold smartphones is increasing. Use of these sensors (which are to be found in the smartphone) for human activity recognition with health care improvement in mind is a discussed theme. Advantages of the use of smartphone for human movement monitoring lies in the fact that it is a device that the person measured carries with them and there are no additional costs. The disadvantages are a limited storage and battery. Therefore, only accelerometer, gyroscope, magnetometer, and microphone were chosen because their combination achieves best results. GPS sensor was excluded for its lack of reliability in sampling and for being energy demanding. Features were computed from the measured data and used for learning of the classification model. The highest accuracy was achieved with the use of a machine learning method called Random Forest. The main goal of this work was to create an algorithm for transportation mode recognition using signals sensed by a smartphone. The created algorithm succeeds in classification of walk, car, bus, tram, train, and bike in 97.4 % with 20 % holdout validation. When tested on a new set of data from the tenth volunteer, the resulting accuracy counted as average form classification recall for each transportation mode reached 90.49 %.
126

Robotická ruka / Robotic hand

Pizúr, Lukáš January 2019 (has links)
The aim of this work is to design a robotic hand, which will be controlled by wireless Wi-Fi, will be equipped with a camera and for easier operation will be designed control glove. The first part of the thesis is a theoretical analysis, various variants of sensors are described, which can be used for motion detection, each drive units and their control. Next chapters are focused on used electronic modules and microcontrollers. The second part is practical and is focused on the mechanical design of a five-finger robotic hand and fixing to a robotic arm. Also described is the control electronics of the entire robotic hand and the programmed firmware. Next, the design and implementation of the control glove is described. The last chapter describes the programmed application for the Android operating system.
127

Rozšíření funkcionality lokátoru pro poziční systém reálného času / New features for real-time positioning system locator

Studený, Jakub January 2019 (has links)
The diploma thesis deals with the detection of falls and impacts, based on data obtained from inertial sensors, and by measuring the distance using a laser. The aim of this thesis is to extend the functionality of locators from Sewio. The thesis describes the procedure for designing algorithms for detection of falls and impacts. Then there is a procedure for development of hardware and software solution, for laser distance measurement by locator, together with presentation of achieved measurement results realized by locator after implementation of proposed solution. The work also emphasizes the minimization of energy consumption of individual solutions. In conclusion, there is a discussion of achieved results with evaluation of efficiency and usability of proposed solutions.
128

Hybridní řídicí systém pro quadrokoptéru / Hybrid Control System for Quadrocopter

Sojka, Stanislav January 2013 (has links)
This thesis deals with the design and theoretical description of the hybrid control system for quadrocopter. First, a mathematical model is presented, sensors needed for development and their principles. This work shows the system architecture design and scheme of communication channels between the blocks. Implementation section discusses specific uses of computing nodes/sensors and their settings. In this thesis there are illustrated messages sent between computing nodes and the control loop machine. It also describes how to test the sensors, measurement results and techniques for improvement.
129

Platforma pro vývoj tří-rotorové helikoptéry / Development of Platform for Three-Rotor Helicopter

Votava, Martin January 2012 (has links)
The goal of this master's thesis is design and built of platform for three-rotor helicopter development. The helicopter is also known as tricopter. Theoretical part describes principle of tricopter's flight and stabilization. There is also described basics inertial navigation system and sensors which are required for correct functionality. Practical part is dedicated to development of tricopter's frame, schematics diagram, communication between subsystems and stabilization system development. Flight stablization system is base on ATmega128A an using PID Controller. In the end is described testing of developed platform.
130

Návrh a konstrukce dvoukolového mobilního robotu / Design and Construction of a Two-Wheel Mobile Robot

Meisl, Milan January 2011 (has links)
This diploma thesis deals with a design and construction of a two-wheeled mobile robot. In order to prepare a high-quality project, a testing carriage has been constructed serving as a basis of useful information for the final design and construction. Beside introduction and conclusion, the diploma thesis consists of four main parts. While the first part of the thesis briefly introduces the field of robotics, the theoretical part focuses both on particular components necessary for the robot's construction as well as the Segway vehicle which served as an inspiration for the robot's functionality. After characteristics of a testing carriage, attention is devoted to individual methods of stabilization, with several different types of sensors being used. Furthermore, the chapter on mechanical design examines choice of devices and their position and provides a scheme for their construction. The electrical design follows afterwards, describing circuits that were considered optimal for the designed wiring. The forth part of the diploma thesis concentrates on the construction of a two-wheeled carriage and covers following topics: construction of mechanical components, production of electric boards, programmatic equipment of the carriage and its implementation, testing of the carriage and finally also an evaluation of achieved results.

Page generated in 0.0528 seconds