Spelling suggestions: "subject:"hämatopoetische stammzellen"" "subject:"hämatopoetische stammzelle""
1 |
Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitroOrdemann, Rainer, Jing, Duohui, Fonseca, Ana-Violeta, Alakel, Nael, Fierro, Fernando A., Muller, Katrin, Bornhauser, Martin, Ehninger, Gerhard, Corbeil, Denis 04 January 2016 (has links) (PDF)
Background
Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and ‘stemness’ of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion.
Design and Methods
In the co-culture system, we defined three distinct localizations of hematopoietic stem cells relative to the mesenchymal stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the mesenchymal stromal cells (phase-dim cells). Cell cycle, proliferation, cell division and immunophenotype of these three cell fractions were evaluated from day 1 to 7.
Results
Phase-bright cells contained the highest proportion of cycling progenitors during co-culture. In contrast, phase-dim cells divided much more slowly and retained a more immature phenotype compared to the other cell fractions. The phase-dim compartment was soon enriched for CD34+/CD38− cells. Migration beneath the mesenchymal stromal cell layer could be hampered by inhibiting integrin β1 or CXCR4.
Conclusions
Our data suggest that the mesenchymal stromal cell surface is the predominant site of proliferation of hematopoietic stem cells, whereas the compartment beneath the mesenchymal stromal cell layer seems to mimic the stem cell niche for more immature cells. The SDF-1/CXCR4 interaction and integrin-mediated cell adhesion play important roles in the distribution of hematopoietic stem cells in the co-culture system.
|
2 |
Identification of Epo-independent red cell progenitors : the E-cad+ progenitorsLemke, Britt January 2004 (has links)
Erythrozyten zählen zu den am häufigsten vorkommenden terminal differenzierten Zelltypen des menschlichen Körpers. Durchschnittlich werden täglich ca. 2 x 1011 von ihnen im Körper eines erwachsenen Menschen produziert. Die reifen Erythrozyten entstehen aus multipotenten hämatopoetischen Stammzellen, die über Stadien von erythroiden Vorläuferzellen, erst den sogenannten burst forming units-erythroid (BFU-E) und später den colony forming units-erythroid (CFU-E), zu kernlosen hämoglobinisierten Zellen differenzieren. <br />
<br />
Für die Untersuchung der molekularen Mechanismen der humanen Erythropoese ist die effektive in vitro Amplifizierung einer weitgehend homogenen Population der Vorläuferzellen der einzelnen Entwicklungsstadien notwendig. Den Wachstumsfaktoren stem cell factor (SCF) und Erythropoietin (Epo) fällt dabei eine entscheidende Rolle zu. Unter ihrem synergistischen Einfluß lassen sich Epo-abhängige Zellpopulationen, die sich aus BFU-E und CFU-E Typ Zellen zusammensetzen, ausreichend amplifizieren (Panzenböck et al., 1998). Freyssinier et al., 1999 beschrieb erstmals die Isolierung einer Epo-unabhängigen Population von Vorläuferzellen (CD36+ Vorläuferzellen), die ebenfalls erythroide Eigenschaften aufweisen.<br />
<br />
Ziel dieser Arbeit war die Isolierung und Charakterisierung von Epo-unabhängigen Vorläuferzellen, die eine frühe erythroide und möglichst homogene Vorläuferzellpopulation darstellen und möglicherweise ein höheres Proliferationspotential aufweisen.<br />
<br />
Für die Identifizierung der Epo-unabhängigen Vorläuferzellen, wurden CD34+ Zellen aus Nabelschnurblut aufgereinigt und unter serumfreien Kulturbedingungen und unter Zusatz der Wachstumsfaktoren SCF, Interleukin 3 (IL-3) und eines Fusionsproteins aus IL-6 und löslichem IL-6 Rezeptor (hyper-IL-6) über einen Zeitraum von 8 Tagen kultiviert. Anschließend wurde eine Population von E-cadherin positiven (E-cad+) Zellen über immunomagnetische Selektion isoliert. Diese neu gewonnenen Epo-unabhängigen E-cad+ Vorläuferzellen wurden hinsichtlich ihres proliferativen Potentials und ihrer Differenzierungseigenschaften mit SCF/Epo-Vorläuferzellen und CD36+ Vorläuferzellen verglichen. Von allen drei Zelltypen wurden des weiteren detailierte molekulargenetische Analysen mittels DNA microarray Technologie durchgeführt und die resultierenden Genexpressionsmuster miteinander verglichen.<br />
<br />
Die Ergebnisse zeigen, dass die E-cad+ Vorläuferzellen eine frühe, weitgehend homogene Epo-unabhängige Population vom BFU-E Typ darstellen und durch entsprechende Änderungen der Kulturbedingungen zu einer in vitro Differenzierung angeregt werden können. Die E-cad+ Vorläuferzellen sind hinsichtlich ihres proliferativen Potentials, ihrer Reaktion auf verschiedene Wachstumsfaktoren, der Expression spezifischer Oberflächenmoleküle und ihrer Genexpressionsmuster mit SCF/Epo-Vorläuferzellen und CD36+ Vorläuferzellen vergleichbar.<br />
<br />
Aufgrund der Identifizierung unterschiedlich exprimierter Gene zwischen den Epo-unabhängigen E-cad+ und den Epo-abhängigen SCF/Epo Vorläuferzellen konnten Kanditatengene wie Galectin-3, Cyclin D1, der Anti-Müllerian Hormonrezeptor, Prostata-Differenzierungsfaktor und insulin-like growth factor binding protein 4 identifiziert werden, die als potentielle Regulatoren der Erythropoese in Betracht kommen könnten. Es konnte weiterhin gezeigt werden, dass CD36+ Vorläuferzellen, die aus der selben Zellpopulation wie die E-cad+ Vorläuferzellen immunomagnetisch selektioniert wurden, eine heterogene Population darstellen, die sowohl E-cadherin positive als auch negative Zellen enthält. Die Analyse der Genexpressionsmuster zeigte, dass in den CD36+ Vorläuferzellen zwar auch die Expression erythroid-spezifischen Gene nachgewiesen werden kann, hier aber im Gegensatz zu den E-cad+ Vorläuferzellen auch für Megakaryozyten spezifische Gene stark exprimiert sind.<br />
<br />
Die Ergebnisse dieser Arbeit tragen zu einem neuen Modell der in vivo Abläufe der Entwicklung roter Blutzellen bei und werden der weiteren Untersuchung der molekularen Mechanismen der Erythropoese dienen. / Red cell development in adult humans results in the mean daily production of 2x1011 erythrocytes. Mature hemoglobinized and enucleated erythrocytes develop from multipotent hematopoietic stem/progenitor cells through more committed progenitor cell types such as BFU-E and CFU-E. The studies on the molecular mechanisms of erythropoiesis in the human system require a sufficient number of purified erythroid progenitors of the different stages of erythropoiesis. Primary human erythroid progenitors are difficult to obtain as a homogenous population in sufficiently high cell numbers. Various culture conditions for the in vitro cell culture of primary human erythroid progenitors have been previously described. Mainly, the culture resulted in the generation of rather mature stages of Epo-dependent erythroid progenitors. In this study our efforts were directed towards the isolation and characterization of more early red cell progenitors that are Epo-independent.<br />
<br />
To identify such progenitors, CD34+ cells were purified from cord blood and cultured under serum free conditions in the presence of the growth factors SCF, IL-3 and hyper-IL-6, referred to as SI2 culture conditions. By immunomagnetic bead selection of E-cadherin (E-cad) positive cells, E-cad+ progenitors were isolated. These Epo-independent E-cad+ progenitors have been amplified under SI2 conditions to large cell numbers. The E-cad+ progenitors were characterized for surface antigen expression by flow cytometry, response to growth factors in proliferation assay and for their differentiation potential into mature red cells. Additionally, the properties of E-cad+ progenitors were compared to those of two other erythroid progenitors: Epo-dependent progenitors described by Panzenböck et al. (referred to as SCF/Epo progenitor), and CD36+ progenitors described by Freyssinier et al. (Panzenböck et al., 1998; Freyssinier et al., 1999). Finally, the gene expression profile of E-cad+ progenitors was compared to the profiles of SCF/Epo progenitors and CD36+ progenitors using the DNA microarray technique.<br />
<br />
Based on our studies we propose that Epo-independent E-cad+ progenitors are early stage, BFU-E like progenitors. They respond to Epo, despite the fact that they were generated in the absence of Epo, and can completely undergo erythroid differentiation. Furthermore, we demonstrate that the growth properties, the growth factor response and the surface marker expression of E-cad+ progenitors are similar to those of the SCF/Epo progenitors and the CD36+ progenitors. By the comparison of gene profiles, we were also able to demonstrate that the Epo-dependent and Epo-independent red cell progenitors are very similar. Analyzing the molecular differences between E-cad+ and SCF/Epo progenitors revealed several candidate genes such as galectin-3, cyclin D1, AMHR, PDF and IGFBP4, which are potential regulators involved in red cell development. We also demonstrate that the CD36+ progenitors, isolated by immunomagentic bead selection, are a heterogeneous progenitor population containing an E-cad+ and an E-cad- subpopulation. Based on their gene expression profile, CD36+ progenitors seem to exhibit both erythroid and megakaryocytic features.<br />
<br />
These studies led to a more updated model of erythroid cell development that should pave the way for further studies on molecular mechanisms of erythropoiesis.
|
3 |
Theoretical studies on the lineage specification of hematopoietic stem cells / Theoretische Untersuchungen zur Linienspezifikation hämatopoetischer StammzellenGlauche, Ingmar 23 November 2010 (has links) (PDF)
Hämatopoetische Stammzellen besitzen die Fähigkeit, die dauerhafte Erhaltung ihrer eigenen Population im Knochenmark zu gewährleisten und gleichzeitig zur Neubildung der verschiedenen Zelltypen des peripheren Blutes beizutragen. Die Sequenz von Entscheidungsprozessen, die den Übergang einer undifferenzierten Stammzelle in eine funktionale ausgereifte Zelle beschreibt, wird als Linienspezifikation bezeichnet. Obwohl viele Details zu den molekularen Mechanismen dieser Entscheidungsprozesse mittlerweile erforscht sind, bestehen noch immer große Unklarheiten, wie die komplexen phänotypischen Veränderungen hervorgerufen und reguliert werden.
Im Rahmen dieser Dissertation wird ein geeignetes mathematisches Modell der Linienspezifikation hämatopoetischer Stammzellen entwickelt, welches dann in ein bestehendes Modell der hämatopoetischen Stammzellorganisation auf Gewebsebene integriert wird. Zur Verifizierung des theoretischen Modells werden Simulationsergebnisse mit verschiedenen experimentellen Daten verglichen. Der zweite Teil dieser Arbeit konzentriert sich auf die Beschreibung und Analyse der Entwick- lungsprozesse von Einzelzellen, die aus diesem integrierten Modell hervorgehen. Aufbauend auf den entsprechenden Modellsimulationen wird dazu eine topologische Charakterisierung der resultierenden zellulären Genealogien etabliert, welche durch verschiedener Maße für deren Quantifizierung ergänzt wird.
Das vorgestellte mathematische Modell stellt eine neuartige Verknüpfung der intrazellulären Linienspezifikation mit der Beschreibung der hämatopoetischen Stammzellorganisation auf Populationsebene her. Dadurch wird das Stammzellm- odell von Röder und Löffler um die wichtige Dimension der Linienspezifikation ergänzt und damit in seinem Anwendungsbereich deutlich ausgedehnt. Durch die Analyse von Einzelzellverläufen trägt das Modell zu einem grundlegenden Verständnis der inhärenten Heterogenität hämatopoetischer Stammzellen bei.
|
4 |
New Insights into the Cell Biology of Hematopoietic Progenitors by Studying Prominin-1 (CD133)Bauer, Nicola, Fonseca, Ana-Violeta, Florek, Mareike, Freund, Daniel, Jászai, József, Bornhäuser, Martin, Fargeas, Christine A., Corbeil, Denis 04 March 2014 (has links) (PDF)
Prominin-1 (alias CD133) has received considerable interest because of its expression by several stem and progenitor cells originating from various sources, including the neural and hematopoietic systems. As a cell surface marker, prominin-1 is now used for somatic stem cell isolation. Its expression in cancer stem cells has broadened its clinical value, as it might be useful to outline new prospects for more effective cancer therapies by targeting tumor-initiating cells. Cell biological studies of this molecule have demonstrated that it is specifically concentrated in various membrane structures that protrude from the planar areas of the plasmalemma. Prominin-1 binds to the plasma membrane cholesterol and is associated with a particular membrane microdomain in a cholesterol-dependent manner. Although its physiological function is not yet determined, it is becoming clear that this cell surface protein, as a unique marker of both plasma membrane protrusions and membrane microdomains, might reveal new aspects of the cell biology of rare stem and cancer stem cells. The aim of this review is to outline the recent discoveries regarding the dynamic reorganization of the plasma membrane of rare CD133+ hematopoietic progenitor cells during cell migration and division. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
5 |
Hematopoietic Stem Cell Differentiation inside Extracellular Matrix functionalized Microcavities / Differenzierung von Hämatopoietischen Stammzellen in Extrazellulärmatrix‐MikrokavitätenKurth, Ina 18 July 2011 (has links) (PDF)
The bone marrow (BM) niche provides hematopoietic stem (HSC) and progenitor cells with many exogenous cues that tightly regulate homeostasis. These cues orchestrate cellular decisions, which are difficult to dissect and analyze in vivo. This thesis introduces a novel in vitro platform that permits systematic studies of BM-relevant factors that regulate homeostasis. Specifically, the role of 3D patterned adhesion ligands and soluble cytokines were studied in a combinatorial fashion. Analysis of human HSC differentiation and proliferation at both population and single cell level showed synergistic and antagonistic effects of adhesion- and cytokine-related signals. Those effects were dependent on the cytokine concentration and the distribution and number of adhesion ligands.
The aim of this thesis was to model the in vivo bone marrow with its porous 3D structure and different sized niche compartments using a microcavity culture carrier. The developed culture system presented extracellular matrix (ECM) adhesion ligands to the HSCs in various defined dimensions ranging from single- to multi-cell capacity. The 3D open well geometry of the microcavity carriers also allowed HSCs to freely explore different scenarios including homing, migration, adhesion, or suspension. Furthermore, the developed setup offered straightforward accessibility to analytical methods like cytometry and quantitative microscopy.
Single cell analysis of adherent HSCs showed decreased DNA synthesis and higher levels of stem cell marker expression within single cell microcavities under low cytokine conditions . This effect was reflected in a decline of proliferation and differentiation with decreasing microcavity size. When the cytokine concentration was increased2 beyond physiological levels the inhibitory effect on proliferation and differentiation due to single-cell-microcavity adherence was diminished. This result highlighted the fine balance between adhesion related and soluble cues regulating HSC fate. Within small microcavities more adhesion related receptors were engaged due to the 3D character of the culture carrier compared to multi-cell wells or conventional 2D cell culture plates. This study demonstrated that adhesion-related signal activation leads to reduced proliferation and differentiation. This geometry-based effect could be reversed by increased cytokine supplementation in the culture media. For plane substrates, HSCs attachment to fibronectin or heparin initiated early cell cycle entry compared to non-adherent cells during the initial 24h. Cytokine supplemented media favored integrin activation that induced fast adhesion, ultimately leading to early cell cycle activation. However, after prolonged cell culture the system balanced itself with a lower cycling rate of adherent versus non-adherent HSCs. Furthermore, HSCs within the 3-dimensionality of the microcavities cycled less than 2D adherent cells. These findings additionally supported the above stated idea of limited HSC proliferation as a consequence of more adhesion-related signals overwriting cytokine driven expansion.
To complement the various in vitro studies, an in vivo repopulation study was performed. Cultured HSCs derived from single cell microcavities outperformed freshly isolated HSCs in a competitive repopulation assay, indicating that carefully engineered substrates are capable of preserving stem cell potential.
Overall the reported findings provide a promising in vitro culture strategy that allows the stem cell field to gain a better understanding of the impact of distinct exogenous signals on human HSCs, which discloses new concepts for the wide scientific community working towards tissue engineering and regenerative medicine. / Die Homöostase der Hämatopoietischen Stamm- und Vorläuferzellen (HSC) in der Knochenmark Nische wird von einer Vielzahl exogener Faktoren gezielt reguliert. Diese Faktoren orchestrieren intrazelluläre Vorgänge, deren in vivo Analyse kompliziert ist. Die vorliegende These widmet sich einem neuen biotechnologischen Ansatz, der systematische Studien von Knochenmark-relevanten Faktoren ermöglicht. Im Speziellen wurde die Rolle 3D-präsentierter Zell Adhäsionsliganden in Kombination mit verschiedenen Konzentrationen löslicher Zytokine untersucht. Die Auswertung der Proliferation und Differenzierung von humanen HSC auf Einzelzell- und Populationsebene offenbarte die synergistischen und antagonistischen Effekte von Adhäsions- und Zytokinsignalen in ihrer Abhängigkeit von der Verteilung und der Anzahl von Adhäsionsliganden sowie der Zytokinkonzentration.
Um die poröse Struktur des Knochenmarks in vivo-ähnlich darzustellen, wurde eine Zellkultur Plattform mit Mikrokavitäten verschiedenster Dimensionen von Multi- bis Einzelzellgröße entwickelt und mit Molekülen der extrazellulären Matrix beschichtet. Die Vorteile dieser Plattform liegen in der offenen 3D-Geometrie dieses mikrokavitäten Kultursystems, die den Zellen ermöglichte verschiedene Wachstumsbedingungen bezüglich Homing, Migration, Adhäsion oder Suspension frei zu erkunden. Das leicht zugängliche Setup eignete sich zudem hervorragend für die zytometrische Analyse der Zellen oder die quantitative Mikroskopie.
Die Einzelzellanalyse adhärenter HSC ergab eine Reduktion von DNA Synthese und eine höhere Expression von Stammzelloberflächenfaktoren innerhalb der Einzelzell-Mikrokavitäten bei niedrigen Zytokinkonzentrationen . Dieser Effekt spiegelte sich auch auf Populationsebene in verminderter Proliferation und Differenzierung mit abnehmender Größe der Mikrokavitäten wider. Wurde die Zytokinkonzentration jedoch weit über physiologische Bedingungen erhöht, verminderte sich der Effekt (reduzierte DNA Synthese und höhere Stammzellfaktorexpression) beschrieben für die Einzelzellmikrokavitäten. Dieses Ergebnis verdeutlicht die empfindliche intrazelluläre Balance, vermittelt durch Adhäsionsignale und löslichen Faktoren, die das Verhalten von HSCs regulieren. Aufgrund des 3D-Charakters des Zellkulturträgers wurden innerhalb kleiner Mikrokavitäten mehr Adhäsionsrezeptoren ringsum die Zelle aktiviert. Dieser Vorteil gegenüber den Multizellkavitäten oder der herkömmlichen 2D–Zellkultur ermöglichte eine hohe Anzahl adhäsionsvermittelter Signale mit entsprechend höherer Proliferations-inhibitorischer Wirkung. Je höher die Konzentration der Zytokine war, desto stärker erfolgte die Stimulation der Proliferation und Differenzierung. Auf 2D Substraten, initiierte Adhäsion zu Fibronektin und Heparin innerhalb der ersten 24h einen frühen Zell-Zyklus-Start im Gegensatz zu nicht adhärenten Zellen. Die Zytokine im Zellmedium förderten die Integrin Aktivierung, was zu einer schnellen Zelladhäsion führte. Die Adhäsionsrezeptoren wiederum kooperieren mit Zytokinrezeptoren im Zellinneren und begünstigten damit einen zeitigeren Zell-Zyklus- Start. Allerdings stellte sich danach ein Gleichgewicht im Kultursystem ein, wobei weniger adhärente Zellen als nicht-adhärente Zellen den Zellzyklus durchliefen. Des Weiteren war die Zellzyklusrate innerhalb von 3D Mikrokavitäten niedriger verglichen mit herkömmlichen 2D Substraten. Diese Ergebnisse bestätigen ferner obenstehende These, dass Zytokin-induzierte Zellexpansion durch erhöhte Zelladhäsions-vermittelte Signale überschrieben wird.
Um die in vitro Studien zu komplettieren wurde ein in vivo Repopulationsversuch durchgeführt. HSC kultiviert auf Einzel-Zell-Mikrokavitäten übertrafen frisch isolierte Konkurrenz-Zellen in einem kompetitiven Repopulationsversuch. Dieses erste Ergebnis zeigt, dass sich der Zellgröße entsprechende Biomaterialien für die erfolgreiche Stammzell-Kultur eignen.
Die Ergebnisse dieser Arbeit bieten eine vielversprechende in vitro Zellkulturstrategie, die ein besseres Verständnis der Einflüsse von exogenen Signalen auf HSC erlaubt und damit eine Grundlage für neue Erkenntnisse in Richtung erfolgreicheres Tissue Engineering und klinische Anwendungen im Bereich der regenerativen Medizin bildet.
|
6 |
Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitroOrdemann, Rainer, Jing, Duohui, Fonseca, Ana-Violeta, Alakel, Nael, Fierro, Fernando A., Muller, Katrin, Bornhauser, Martin, Ehninger, Gerhard, Corbeil, Denis 04 January 2016 (has links)
Background
Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and ‘stemness’ of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion.
Design and Methods
In the co-culture system, we defined three distinct localizations of hematopoietic stem cells relative to the mesenchymal stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the mesenchymal stromal cells (phase-dim cells). Cell cycle, proliferation, cell division and immunophenotype of these three cell fractions were evaluated from day 1 to 7.
Results
Phase-bright cells contained the highest proportion of cycling progenitors during co-culture. In contrast, phase-dim cells divided much more slowly and retained a more immature phenotype compared to the other cell fractions. The phase-dim compartment was soon enriched for CD34+/CD38− cells. Migration beneath the mesenchymal stromal cell layer could be hampered by inhibiting integrin β1 or CXCR4.
Conclusions
Our data suggest that the mesenchymal stromal cell surface is the predominant site of proliferation of hematopoietic stem cells, whereas the compartment beneath the mesenchymal stromal cell layer seems to mimic the stem cell niche for more immature cells. The SDF-1/CXCR4 interaction and integrin-mediated cell adhesion play important roles in the distribution of hematopoietic stem cells in the co-culture system.
|
7 |
Myelopoiesis in the Context of Innate ImmunityMitroulis, Ioannis, Kalafati, Lydia, Hajishengallis, George, Chavakis, Triantafyllos 04 August 2020 (has links)
An intact and fully functional innate immune system is critical in the defense against pathogens. Indeed, during systemic infection, the ability of the organism to cope with the increased demand for phagocytes depends heavily on sufficient replenishment of mature myeloid cells. This process, designated emergency or demand-adapted myelopoiesis, requires the activation of hematopoietic progenitors in the bone marrow (BM), resulting in their proliferation and differentiation toward the myeloid lineage. Failure of BM progenitors to adapt to the enhanced need for mature cells in the periphery can be life-threatening, as indicated by the detrimental effect of chemotherapy-induced myelosuppression on the outcome of systemic infection. Recent advances demonstrate an important role of not only committed myeloid progenitors but also of hematopoietic stem cells (HSCs) in emergency myelopoiesis. In this regard, pathogen-derived products (e.g., Toll-like receptor ligands) activate HSC differentiation towards the myeloid lineage, either directly or indirectly, by inducing the production of inflammatory mediators (e.g., cytokines and growth factors) by hematopoietic and nonhematopoietic cell populations. The inflammatory mediators driving demand-adapted myelopoiesis target not only HSCs but also HSC-supportive cell populations, collectively known as the HSC niche, the microenvironment where HSCs reside. In this review, we discuss recent findings that have further elucidated the mechanisms that drive emergency myelopoiesis, focusing on the interactions of HSCs with their BM microenvironment.
|
8 |
Hematopoietic Stem Cell Differentiation inside Extracellular Matrix functionalized MicrocavitiesKurth, Ina 03 May 2011 (has links)
The bone marrow (BM) niche provides hematopoietic stem (HSC) and progenitor cells with many exogenous cues that tightly regulate homeostasis. These cues orchestrate cellular decisions, which are difficult to dissect and analyze in vivo. This thesis introduces a novel in vitro platform that permits systematic studies of BM-relevant factors that regulate homeostasis. Specifically, the role of 3D patterned adhesion ligands and soluble cytokines were studied in a combinatorial fashion. Analysis of human HSC differentiation and proliferation at both population and single cell level showed synergistic and antagonistic effects of adhesion- and cytokine-related signals. Those effects were dependent on the cytokine concentration and the distribution and number of adhesion ligands.
The aim of this thesis was to model the in vivo bone marrow with its porous 3D structure and different sized niche compartments using a microcavity culture carrier. The developed culture system presented extracellular matrix (ECM) adhesion ligands to the HSCs in various defined dimensions ranging from single- to multi-cell capacity. The 3D open well geometry of the microcavity carriers also allowed HSCs to freely explore different scenarios including homing, migration, adhesion, or suspension. Furthermore, the developed setup offered straightforward accessibility to analytical methods like cytometry and quantitative microscopy.
Single cell analysis of adherent HSCs showed decreased DNA synthesis and higher levels of stem cell marker expression within single cell microcavities under low cytokine conditions . This effect was reflected in a decline of proliferation and differentiation with decreasing microcavity size. When the cytokine concentration was increased2 beyond physiological levels the inhibitory effect on proliferation and differentiation due to single-cell-microcavity adherence was diminished. This result highlighted the fine balance between adhesion related and soluble cues regulating HSC fate. Within small microcavities more adhesion related receptors were engaged due to the 3D character of the culture carrier compared to multi-cell wells or conventional 2D cell culture plates. This study demonstrated that adhesion-related signal activation leads to reduced proliferation and differentiation. This geometry-based effect could be reversed by increased cytokine supplementation in the culture media. For plane substrates, HSCs attachment to fibronectin or heparin initiated early cell cycle entry compared to non-adherent cells during the initial 24h. Cytokine supplemented media favored integrin activation that induced fast adhesion, ultimately leading to early cell cycle activation. However, after prolonged cell culture the system balanced itself with a lower cycling rate of adherent versus non-adherent HSCs. Furthermore, HSCs within the 3-dimensionality of the microcavities cycled less than 2D adherent cells. These findings additionally supported the above stated idea of limited HSC proliferation as a consequence of more adhesion-related signals overwriting cytokine driven expansion.
To complement the various in vitro studies, an in vivo repopulation study was performed. Cultured HSCs derived from single cell microcavities outperformed freshly isolated HSCs in a competitive repopulation assay, indicating that carefully engineered substrates are capable of preserving stem cell potential.
Overall the reported findings provide a promising in vitro culture strategy that allows the stem cell field to gain a better understanding of the impact of distinct exogenous signals on human HSCs, which discloses new concepts for the wide scientific community working towards tissue engineering and regenerative medicine.:Kurzbeschreibung 4
Abstract 6
1 Introduction 8
1.1 Motivation 8
1.2 Objective 8
2 Basics 10
2.1 Stem Cells and their Role in Life 10
Stem Cells and their Niches 12
2.1.1 Hematopoietic Stem Cells 12
2.1.2 Hematopoietic Stem Cell Niche 14
2.1.3 The ECM Relevancy 16
2.1.4 HSC Relevant Cytokines 19
2.2 Cell Culture Scaffolds 21
2.2.1 General 2D, 3D 21
2.2.2 Substrate Engineering 22
2.2.3 Co-Culture versus the Artificial 3D Niche 23
3 Materials and Methods 25
3.1 Chemicals, Reagents and Equipment 25
3.2 Wafer Design and Surface Functionalization 29
3.3 Cell Culture and Analysis 31
3.3.1 HSC Culture in ECM-functionalized Microcavities 32
3.4 Surface Passivation 33
3.5 Mouse Bone Marrow Preparation 35
4 Results and Discussion 37
4.1 Scaffold Design and Preparation 37
4.1.1 Surface Characterization 37
4.1.2 Surface Passivation 39
Approaches for Surface Passivation 39
Efficiency of Surface Passivation 39
4.1.3 Redesigned Microcavities 43
4.2 Summarized Discussion of the Surface Passivation 44
4.3 HSC Culture inside Microcavities 45
4.3.1 HSC-ECM Interaction Reduces Proliferation 45
4.3.2 Population-wide Proliferation and Differentiation of Spatially Constrained HSCs . … 46
HSCs within Redesigned Microcavities 48
4.3.3 Colony-forming Ability of Microcavity Cultures 50
4.4 Single Cell Analysis of Differentiation 52
4.5 Cell Cycling Dependency on Cytokine Level 53
4.5.1 Plane Surfaces 54
4.5.2 Microcavities Reduce Cycling Frequency 57
4.6 Mice Repopulation of Microcavity Cultured HSCs 58
4.7 Summarized Discussion of the HSC–ECM Relation 60
4.8 Future Prospects 62
5 Summary 63
References 64
Figure Legend 73
Tables 73
Theses 74
6 Appendices I
6.1 FACS Principle I
6.1.1 HSC Staining for CD Marker and Cell Cycle Kinetics I
6.1.2 Apoptosis Test II
6.2 Differentiation and Proliferation on Redesigned Microcavities III
6.3 Colony-forming Capability of Microcavity Cultured Cells IV
6.4 Effect of Trypsin on HSC Properties in Long Term Culture IV
6.5 Surface Functionalization with SCF V
6.5.1 Analysis of the HSCs Grown on Immobilized SCF VI
6.5.2 SCF Immobilization and its Kinetics VII
6.5.3 c-kit Expression Kinetics and HSC Differentiation VIII
Short Discussion on the Growth Factor Immobilization IX
Publications X
Posters X
Proceedings XI
Talks XI
Patents XI
Papers XI
Awards XI
7 Danksagung: XII
Selbstständigkeitserklärung: XIII / Die Homöostase der Hämatopoietischen Stamm- und Vorläuferzellen (HSC) in der Knochenmark Nische wird von einer Vielzahl exogener Faktoren gezielt reguliert. Diese Faktoren orchestrieren intrazelluläre Vorgänge, deren in vivo Analyse kompliziert ist. Die vorliegende These widmet sich einem neuen biotechnologischen Ansatz, der systematische Studien von Knochenmark-relevanten Faktoren ermöglicht. Im Speziellen wurde die Rolle 3D-präsentierter Zell Adhäsionsliganden in Kombination mit verschiedenen Konzentrationen löslicher Zytokine untersucht. Die Auswertung der Proliferation und Differenzierung von humanen HSC auf Einzelzell- und Populationsebene offenbarte die synergistischen und antagonistischen Effekte von Adhäsions- und Zytokinsignalen in ihrer Abhängigkeit von der Verteilung und der Anzahl von Adhäsionsliganden sowie der Zytokinkonzentration.
Um die poröse Struktur des Knochenmarks in vivo-ähnlich darzustellen, wurde eine Zellkultur Plattform mit Mikrokavitäten verschiedenster Dimensionen von Multi- bis Einzelzellgröße entwickelt und mit Molekülen der extrazellulären Matrix beschichtet. Die Vorteile dieser Plattform liegen in der offenen 3D-Geometrie dieses mikrokavitäten Kultursystems, die den Zellen ermöglichte verschiedene Wachstumsbedingungen bezüglich Homing, Migration, Adhäsion oder Suspension frei zu erkunden. Das leicht zugängliche Setup eignete sich zudem hervorragend für die zytometrische Analyse der Zellen oder die quantitative Mikroskopie.
Die Einzelzellanalyse adhärenter HSC ergab eine Reduktion von DNA Synthese und eine höhere Expression von Stammzelloberflächenfaktoren innerhalb der Einzelzell-Mikrokavitäten bei niedrigen Zytokinkonzentrationen . Dieser Effekt spiegelte sich auch auf Populationsebene in verminderter Proliferation und Differenzierung mit abnehmender Größe der Mikrokavitäten wider. Wurde die Zytokinkonzentration jedoch weit über physiologische Bedingungen erhöht, verminderte sich der Effekt (reduzierte DNA Synthese und höhere Stammzellfaktorexpression) beschrieben für die Einzelzellmikrokavitäten. Dieses Ergebnis verdeutlicht die empfindliche intrazelluläre Balance, vermittelt durch Adhäsionsignale und löslichen Faktoren, die das Verhalten von HSCs regulieren. Aufgrund des 3D-Charakters des Zellkulturträgers wurden innerhalb kleiner Mikrokavitäten mehr Adhäsionsrezeptoren ringsum die Zelle aktiviert. Dieser Vorteil gegenüber den Multizellkavitäten oder der herkömmlichen 2D–Zellkultur ermöglichte eine hohe Anzahl adhäsionsvermittelter Signale mit entsprechend höherer Proliferations-inhibitorischer Wirkung. Je höher die Konzentration der Zytokine war, desto stärker erfolgte die Stimulation der Proliferation und Differenzierung. Auf 2D Substraten, initiierte Adhäsion zu Fibronektin und Heparin innerhalb der ersten 24h einen frühen Zell-Zyklus-Start im Gegensatz zu nicht adhärenten Zellen. Die Zytokine im Zellmedium förderten die Integrin Aktivierung, was zu einer schnellen Zelladhäsion führte. Die Adhäsionsrezeptoren wiederum kooperieren mit Zytokinrezeptoren im Zellinneren und begünstigten damit einen zeitigeren Zell-Zyklus- Start. Allerdings stellte sich danach ein Gleichgewicht im Kultursystem ein, wobei weniger adhärente Zellen als nicht-adhärente Zellen den Zellzyklus durchliefen. Des Weiteren war die Zellzyklusrate innerhalb von 3D Mikrokavitäten niedriger verglichen mit herkömmlichen 2D Substraten. Diese Ergebnisse bestätigen ferner obenstehende These, dass Zytokin-induzierte Zellexpansion durch erhöhte Zelladhäsions-vermittelte Signale überschrieben wird.
Um die in vitro Studien zu komplettieren wurde ein in vivo Repopulationsversuch durchgeführt. HSC kultiviert auf Einzel-Zell-Mikrokavitäten übertrafen frisch isolierte Konkurrenz-Zellen in einem kompetitiven Repopulationsversuch. Dieses erste Ergebnis zeigt, dass sich der Zellgröße entsprechende Biomaterialien für die erfolgreiche Stammzell-Kultur eignen.
Die Ergebnisse dieser Arbeit bieten eine vielversprechende in vitro Zellkulturstrategie, die ein besseres Verständnis der Einflüsse von exogenen Signalen auf HSC erlaubt und damit eine Grundlage für neue Erkenntnisse in Richtung erfolgreicheres Tissue Engineering und klinische Anwendungen im Bereich der regenerativen Medizin bildet.:Kurzbeschreibung 4
Abstract 6
1 Introduction 8
1.1 Motivation 8
1.2 Objective 8
2 Basics 10
2.1 Stem Cells and their Role in Life 10
Stem Cells and their Niches 12
2.1.1 Hematopoietic Stem Cells 12
2.1.2 Hematopoietic Stem Cell Niche 14
2.1.3 The ECM Relevancy 16
2.1.4 HSC Relevant Cytokines 19
2.2 Cell Culture Scaffolds 21
2.2.1 General 2D, 3D 21
2.2.2 Substrate Engineering 22
2.2.3 Co-Culture versus the Artificial 3D Niche 23
3 Materials and Methods 25
3.1 Chemicals, Reagents and Equipment 25
3.2 Wafer Design and Surface Functionalization 29
3.3 Cell Culture and Analysis 31
3.3.1 HSC Culture in ECM-functionalized Microcavities 32
3.4 Surface Passivation 33
3.5 Mouse Bone Marrow Preparation 35
4 Results and Discussion 37
4.1 Scaffold Design and Preparation 37
4.1.1 Surface Characterization 37
4.1.2 Surface Passivation 39
Approaches for Surface Passivation 39
Efficiency of Surface Passivation 39
4.1.3 Redesigned Microcavities 43
4.2 Summarized Discussion of the Surface Passivation 44
4.3 HSC Culture inside Microcavities 45
4.3.1 HSC-ECM Interaction Reduces Proliferation 45
4.3.2 Population-wide Proliferation and Differentiation of Spatially Constrained HSCs . … 46
HSCs within Redesigned Microcavities 48
4.3.3 Colony-forming Ability of Microcavity Cultures 50
4.4 Single Cell Analysis of Differentiation 52
4.5 Cell Cycling Dependency on Cytokine Level 53
4.5.1 Plane Surfaces 54
4.5.2 Microcavities Reduce Cycling Frequency 57
4.6 Mice Repopulation of Microcavity Cultured HSCs 58
4.7 Summarized Discussion of the HSC–ECM Relation 60
4.8 Future Prospects 62
5 Summary 63
References 64
Figure Legend 73
Tables 73
Theses 74
6 Appendices I
6.1 FACS Principle I
6.1.1 HSC Staining for CD Marker and Cell Cycle Kinetics I
6.1.2 Apoptosis Test II
6.2 Differentiation and Proliferation on Redesigned Microcavities III
6.3 Colony-forming Capability of Microcavity Cultured Cells IV
6.4 Effect of Trypsin on HSC Properties in Long Term Culture IV
6.5 Surface Functionalization with SCF V
6.5.1 Analysis of the HSCs Grown on Immobilized SCF VI
6.5.2 SCF Immobilization and its Kinetics VII
6.5.3 c-kit Expression Kinetics and HSC Differentiation VIII
Short Discussion on the Growth Factor Immobilization IX
Publications X
Posters X
Proceedings XI
Talks XI
Patents XI
Papers XI
Awards XI
7 Danksagung: XII
Selbstständigkeitserklärung: XIII
|
9 |
Theoretical studies on the lineage specification of hematopoietic stem cellsGlauche, Ingmar 05 November 2010 (has links)
Hämatopoetische Stammzellen besitzen die Fähigkeit, die dauerhafte Erhaltung ihrer eigenen Population im Knochenmark zu gewährleisten und gleichzeitig zur Neubildung der verschiedenen Zelltypen des peripheren Blutes beizutragen. Die Sequenz von Entscheidungsprozessen, die den Übergang einer undifferenzierten Stammzelle in eine funktionale ausgereifte Zelle beschreibt, wird als Linienspezifikation bezeichnet. Obwohl viele Details zu den molekularen Mechanismen dieser Entscheidungsprozesse mittlerweile erforscht sind, bestehen noch immer große Unklarheiten, wie die komplexen phänotypischen Veränderungen hervorgerufen und reguliert werden.
Im Rahmen dieser Dissertation wird ein geeignetes mathematisches Modell der Linienspezifikation hämatopoetischer Stammzellen entwickelt, welches dann in ein bestehendes Modell der hämatopoetischen Stammzellorganisation auf Gewebsebene integriert wird. Zur Verifizierung des theoretischen Modells werden Simulationsergebnisse mit verschiedenen experimentellen Daten verglichen. Der zweite Teil dieser Arbeit konzentriert sich auf die Beschreibung und Analyse der Entwick- lungsprozesse von Einzelzellen, die aus diesem integrierten Modell hervorgehen. Aufbauend auf den entsprechenden Modellsimulationen wird dazu eine topologische Charakterisierung der resultierenden zellulären Genealogien etabliert, welche durch verschiedener Maße für deren Quantifizierung ergänzt wird.
Das vorgestellte mathematische Modell stellt eine neuartige Verknüpfung der intrazellulären Linienspezifikation mit der Beschreibung der hämatopoetischen Stammzellorganisation auf Populationsebene her. Dadurch wird das Stammzellm- odell von Röder und Löffler um die wichtige Dimension der Linienspezifikation ergänzt und damit in seinem Anwendungsbereich deutlich ausgedehnt. Durch die Analyse von Einzelzellverläufen trägt das Modell zu einem grundlegenden Verständnis der inhärenten Heterogenität hämatopoetischer Stammzellen bei.
|
10 |
CD38 promotes hematopoietic stem cell dormancyIbneeva, Liliia 04 June 2024 (has links)
Hematopoietic stem cells (HSCs) are rare cells that continuously regenerate the entire hematopoietic system by producing billions of blood cells. Dormant HSCs (dHSCs) represent a distinct subpopulation of HSCs characterized by deep quiescence and very low overall biosynthetic activity. Despite this, dHSCs have the highest reconstitution and self-renewal potential and reside at the apex of the hematopoietic hierarchy. While dHSCs do not significantly contribute to daily blood cell production under steady-state conditions, they can be reversibly activated in response to inflammatory signals or blood loss. Thus, dHSCs serve as a reserve pool of HSCs during the entire life. Insufficient dormancy can subject dHSCs to replication stress and promote the accumulation of somatic mutations, increasing the risk of their exhaustion or malignant transformation. Conversely, excessive dormancy can limit normal blood cell production, potentially resulting in bone marrow failure. Therefore, further investigations exploring the mechanisms controlling HSC dormancy are required, as this knowledge is essential for developing novel therapeutic interventions for supporting blood production following chemotherapy or HSC transplantation. Progress in dHSC research has been impeded by technical difficulties associated with isolating these cells. Current methods include either label retention assay, which is very time-consuming, or the use specialized reporter mouse strains that are not readily available. Herein, we utilized single-cell RNA sequencing of HSCs to identify potential surface markers which would facilitate the direct isolation of dHSCs using fluorescence-activated cell sorting (FACS). We selected CD38 as a candidate gene and confirmed that its high expression levels in LT-HSCs, the most functional HSCs identified by the latest surface phenotype, correspond to the dormant subpopulation. Namely, we employed four techniques (staining for cell cycle, label incorporation assay, label retention assay, and single-cell division tracking assay) and demonstrated that CD38+ HSCs are the most quiescent among LT-HSCs. Additionally, through serial competitive transplantation into lethally irradiated mice, we compared CD38+ and CD38- LT-HSCs and discovered that CD38+ LT-HSCs have superior repopulation and self-renewal capacities compared to CD38- LT-HSCs. Thus, we concluded that CD38 is a marker for dHSCs in mice. Besides, we applied the models of hematopoietic stress – acute thrombocytopenia, injection of viral mimetic polyinosinic:polycytidylic acid, and the chemotherapeutic agent 5-fluorouracil, and showed that high expression levels of CD38 on LT-HSCs define dHSCs both in homeostasis and under stress conditions. Notably, we showed that CD38 is not only a marker but also has a functional role in mediating HSC dormancy. Using CD38 knock-out mice, small molecule inhibitor for CD38 enzymatic activity, in vitro assays, bulk RNA sequencing, and confocal microscopy, we discovered a previously unknown signaling axis that promotes HSC dormancy via CD38 enzymatic activity. We demonstrated that second messenger cADPR, synthesized by CD38 through the conversion of nicotinamide adenine dinucleotide - NAD+, elevates free cytoplasmic Ca2+ in dHSCs. This elevation induces the expression of the transcription factor c-Fos. Subsequently, c-Fos forms complexes with the Smad2/3, ultimately promoting dHSC quiescence in p57Kip2-dependent manner. Thus, we revealed that CD38/cADPR/Ca2+/c-Fos-Smad2/3/p57kip2 axis supports dHSCs. Human HSCs (hHSC) are defined as CD38lo/- ; however, CD38 is expressed by various immune cell types present in human bone marrow, such as B-lymphocytes, T-lymphocytes, NK-cells, neutrophils and monocytes. Our co-culture experiments of hHSCs with CD38+ cells and human bone marrow imaging suggest that CD38 promotes hHSC quiescence, however indirectly, in a paracrine manner. Besides, several hematological malignancies (e.g. multiple myeloma, chronic lymphocytic leukemia, acute myeloid leukemia) express CD38 at a high level. We hypothesize that tumor microenvironment enriched in the products of CD38 ecto-enzymatic activity may suppress the cell cycle of healthy hHSCs leading to cancer-related pancytopenia. Therefore, inhibiting CD38-mediated cADPR production might support healthy hematopoiesis in patients with hematologic malignancies. In summary, while CD38/Ca2+ and c-Fos have individually been implicated in proliferation in other cell types, our study for the first time reveals their role in promoting HSC dormancy in collaboration with well-known mediators of HSC quiescence Smad2/3 and p57Kip2. Therefore, we gathered the pieces of the puzzle together and discovered the novel CD38 enzymatic activity-driven signaling pathway controlling HSC dormancy. Manipulation of this axis can potentially stimulate an efficient dHSC response to hematopoietic stress. / Hämatopoetische Stammzellen (HSZ) sind seltene Zellen, die das gesamte blutbildende System kontinuierlich regenerieren, indem sie Milliarden von Blutzellen produzieren. Ruhende HSZ (rHSZ) stellen eine besondere Subpopulation von HSZ dar, die sich durch tiefe Ruhephasen und eine sehr geringe Biosyntheseaktivität auszeichnet. Trotzdem haben rHSZ das höchste Rekonstitutions- und Selbsterneuerungspotenzial und stehen an der Spitze der hämatopoetischen Hierarchie. Während rHSZs unter Normalbedingungen nicht wesentlich zur täglichen Blutzellproduktion beitragen, können sie als Reaktion auf Entzündungssignale oder Blutverlust reversibel aktiviert werden. Somit dienen rHSZ während des gesamten Lebens als HSZ-Reservoir. Eine gestörte Ruhe der rHSZs kann die Zellen einem Replikationsstress aussetzen und die Anhäufung somatischer Mutationen fördern, was das Risiko für Zellerschöpfung oder maligne Transformation erhöht. Umgekehrt kann eine übermäßige Ruhephase die normale Blutzellproduktion einschränken und möglicherweise zu Knochenmarksversagen führen. Daher ist eine weitere Erforschung der Mechanismen erforderlich, die die HSZ-Ruhephase steuern, da dieses Wissen für die Entwicklung neuartiger therapeutischer Maßnahmen zur Unterstützung der Blutproduktion nach einer Chemotherapie oder HSZ-Transplantation unerlässlich ist. Der Fortschritt in der rHSZ-Forschung wurde durch technische Schwierigkeiten bei der Isolierung dieser Zellen behindert. Zu den derzeitigen Methoden gehören entweder der sehr zeitaufwändige Label-Retentionstest oder die Verwendung spezieller Reportermausstämme, die nicht ohne Weiteres verfügbar sind. In dieser Arbeit haben wir die Einzelzell-RNA-Sequenzierung von HSZs genutzt, um potenzielle Oberflächenmarker zu identifizieren, die die direkte Isolierung von rHSZs mittels fluoreszenzaktivierter Zellsortierung (FACS) erleichtern würden. Wir wählten CD38 als Kandidatengen aus und überprüften, dass dessen hohe Expression auf den funktionellsten HSZ (LT-HSZ), welche mit dem neuesten Oberflächenphänotyp isoliert wurden, die ruhenden Subpopulation identifizieren kann. Wir haben vier Techniken angewandt (Färbung für den Zellzyklus, Label-Inkorporationstest, Label-Retentionstest und Einzelzellteilungstest) und gezeigt, dass CD38+ HSZ die am tiefsten ruhenden LT-HSZs sind. Darüber hinaus haben wir durch serielle konkurrierende Transplantation in letal bestrahlte Mäuse CD38+ und CD38- LT-HSZs verglichen und festgestellt, dass CD38+ LT-HSZs im Vergleich zu CD38- LT-HSZs eine höhere Wiederbesiedlungs- und Selbsterneuerungskapazität haben. Daraus schlossen wir, dass CD38 ein Marker für rHSZs in Mäusen ist. Außerdem wendeten wir Modelle für hämatopoetischen Stress an - akute Thrombozytopenie, Injektion des viralen Mimetikums Polyinosin:Polycytidylsäure und des Chemotherapeutikums 5-Fluorouracil - und zeigten, dass eine hohe Expressionsrate von CD38 auf LT-HSZs rHSZs sowohl in Homöostase als auch unter Stressbedingungen definiert. Besonders bemerkenswert ist, dass wir zeigen konnten, dass CD38 nicht nur ein Marker ist, sondern auch eine funktionelle Rolle bei der Vermittlung der HSZ-Ruhe spielt. Mithilfe von CD38-Knock-out-Mäusen, kleinen Molekül-Inhibitoren für die CD38-Enzymaktivität, In-vitro-Tests, Massen-RNA-Sequenzierung und konfokaler Mikroskopie entdeckten wir eine bisher unbekannte Signalachse, die die HSZ-Ruhe über die enzymatische Aktivität von CD38 fördert. Wir konnten nachweisen, dass der sekundäre Botenstoff cADPR, der von CD38 durch die Umwandlung von Nikotinamid-Adenin-Dinukleotid (NAD+) synthetisiert wird, das freie zytoplasmatische Ca2+ in rHSZs erhöht. Diese Erhöhung induziert die Expression des Transkriptionsfaktors c-Fos. Anschließend bildet c-Fos Komplexe mit Smad2/3 und fördert schließlich die Ruhe der rHSZ in Abhängigkeit von p57Kip2. Wir konnten also zeigen, dass die CD38/cADPR/Ca2+/c-Fos-Smad2/3/p57kip2-Achse rHSZs unterstützt. Humane HSZ (hHSZ) werden als CD38lo/- definiert; CD38 wird jedoch von verschiedenen Immunzellarten im menschlichen Knochenmark exprimiert, z. B. von B-Lymphozyten, T-Lymphozyten, NK-Zellen, Neutrophilen und Monozyten. Unsere Co-Kulturexperimente von hHSZs mit CD38+-Zellen und die Bildgebung des menschlichen Knochenmarks deuten darauf hin, dass CD38 die Ruhe von hHSZs fördert, wenn auch indirekt auf parakrine Weise. Außerdem exprimieren mehrere hämatologische Malignome (z. B. multiples Myelom, chronische lymphatische Leukämie, akute myeloische Leukämie) CD38 in hohem Maße. Wir stellen die Hypothese auf, dass die Mikroumgebung des Tumors, die mit den Produkten der ektoenzymatischen Aktivität von CD38 angereichert ist, den Zellzyklus gesunder hHSZs unterdrücken kann, was zu krebsbedingter Panzytopenie führt. Daher könnte die Hemmung der CD38-vermittelten cADPR-Produktion die gesunde Hämatopoese bei Patienten mit hämatologischen Malignomen unterstützen. Zusammenfassend lässt sich sagen, dass CD38/Ca2+ und c-Fos zwar bereits einzeln für die Proliferation in anderen Zelltypen verantwortlich gemacht wurden, unsere Studie jedoch zum ersten Mal ihre Rolle bei der Förderung der HSZ-Ruhe in Zusammenarbeit mit den bekannten Mediatoren der HSZ-Ruhe Smad2/3 und p57Kip2 aufzeigt. Wir haben also die Teile des Puzzles zusammengefügt und den neuartigen, von der enzymatischen Aktivität von CD38 gesteuerten Signalweg entdeckt, der die HSZ-Ruhephase kontrolliert. Die Manipulation dieser Achse kann möglicherweise eine effiziente rHSZ-Reaktion auf hämatopoetischen Stress stimulieren.
|
Page generated in 0.1182 seconds