21 |
Evaluating MapReduce System Performance: A Simulation ApproachWang, Guanying 13 September 2012 (has links)
Scale of data generated and processed is exploding in the Big Data era. The MapReduce system popularized by open-source Hadoop is a powerful tool for the exploding data problem, and is widely employed in many areas involving large scale of data. In many circumstances, hypothetical MapReduce systems must be evaluated, e.g. to provision a new MapReduce system to provide certain performance goal, to upgrade a currently running system to meet increasing business demands, to evaluate novel network topology, new scheduling algorithms, or resource arrangement schemes. The traditional trial-and-error solution involves the time-consuming and costly process in which a real cluster is first built and then benchmarked. In this dissertation, we propose to simulate MapReduce systems and evaluate hypothetical MapReduce systems using simulation. This simulation approach offers significantly lower turn-around time and lower cost than experiments. Simulation cannot entirely replace experiments, but can be used as a preliminary step to reveal potential flaws and gain critical insights.
We studied MapReduce systems in detail and developed a comprehensive performance model for MapReduce, including sub-task phase level performance models for both map and reduce tasks and a model for resource contention between multiple processes running in concurrent. Based on the performance model, we developed a comprehensive simulator for MapReduce, MRPerf. MRPerf is the first full-featured MapReduce simulator. It supports both workload simulation and resource contention, and it still offers the most complete features among all MapReduce simulators to date. Using MRPerf, we conducted two case studies to evaluate scheduling algorithms in MapReduce and shared storage in MapReduce, without building real clusters.
Furthermore, in order to further integrate simulation and performance prediction into MapReduce systems and leverage predictions to improve system performance, we developed online prediction framework for MapReduce, which periodically runs simulations within a live Hadoop MapReduce system. The framework can predict task execution within a window in near future. These predictions can be used by other components in MapReduce systems in order to improve performance. Our results show that the framework can achieve high prediction accuracy and incurs negligible overhead. We present two potential use cases, prefetching and dynamic adapting scheduler. / Ph. D.
|
22 |
Distributed Frameworks Towards Building an Open Data ArchitectureVenumuddala, Ramu Reddy 05 1900 (has links)
Data is everywhere. The current Technological advancements in Digital, Social media and the ease at which the availability of different application services to interact with variety of systems are causing to generate tremendous volumes of data. Due to such varied services, Data format is now not restricted to only structure type like text but can generate unstructured content like social media data, videos and images etc. The generated Data is of no use unless been stored and analyzed to derive some Value. Traditional Database systems comes with limitations on the type of data format schema, access rates and storage sizes etc. Hadoop is an Apache open source distributed framework that support storing huge datasets of different formatted data reliably on its file system named Hadoop File System (HDFS) and to process the data stored on HDFS using MapReduce programming model. This thesis study is about building a Data Architecture using Hadoop and its related open source distributed frameworks to support a Data flow pipeline on a low commodity hardware. The Data flow components are, sourcing data, storage management on HDFS and data access layer. This study also discuss about a use case to utilize the architecture components. Sqoop, a framework to ingest the structured data from database onto Hadoop and Flume is used to ingest the semi-structured Twitter streaming json data on to HDFS for analysis. The data sourced using Sqoop and Flume have been analyzed using Hive for SQL like analytics and at a higher level of data access layer, Hadoop has been compared with an in memory computing system using Spark. Significant differences in query execution performances have been analyzed when working with Hadoop and Spark frameworks. This integration helps for ingesting huge Volumes of streaming json Variety data to derive better Value based analytics using Hive and Spark.
|
23 |
Big Data och Hadoop : Nästa generation av lagringLindberg, Johan January 2017 (has links)
The goal of this report and study is to at a theoretical level determine the possi- bilities for Försäkringskassan IT to change platform for storage of data used in their daily activities. Försäkringskassan collects immense amounts of data ev- eryday containing personal information, lines of programming code, payments and customer service tickets. Today, everything is stored in large relationship databases which leads to problems with scalability and performance. The new platform studied in this report is built on a storage technology named Hadoop. Hadoop is developed to store and process data distributed in what is called clus- ters. Clusters that consists of commodity server hardware. The platform promises near linear scalability, possibility to store all data with a high fault tolerance and that it can handle massive amounts of data. The study is done through theo- retical studies as well as a proof of concept. The theory studies focus on the background of Hadoop, it’s structure and what to expect in the future. The plat- form being used at Försäkringskassan today is to be specified and compared to the new platform. A proof of concept will be conducted in a test environment at Försäkringskassan running a Hadoop platform from Hortonworks. Its purpose is to show how storing data is done as well as to show that unstructured data can be stored. The study shows that no theoretical problems have been found and that a move to the new platform should be possible. It does however move handling of the data from before storage to after. This is because todays platform is reliant on relationship databases that require data to be structured neatly to be stored. Hadoop however stores all data but require more work and knowledge to retrieve the data. / Målet med rapporten och undersökningen är att på en teoretisk nivå undersöka möjligheterna för Försäkringskassan IT att byta plattform för lagring av data och information som används i deras dagliga arbete. Försäkringskassan samlar på sig oerhörda mängder data på daglig basis innehållandes allt från personupp- gifter, programkod, utbetalningar och kundtjänstärenden. Idag lagrar man allt detta i stora relationsdatabaser vilket leder till problem med skalbarhet och prestanda. Den nya plattformen som undersöks bygger på en lagringsteknik vid namn Hadoop. Hadoop är utvecklat för att både lagra och processerna data distribuerat över så kallade kluster bestående av billigare serverhårdvara. Plattformen utlovar näst intill linjär skalbarhet, möjlighet att lagra all data med hög feltolerans samt att hantera enorma datamängder. Undersökningen genomförs genom teoristudier och ett proof of concept. Teoristudierna fokuserar på bakgrunden på Hadoop, dess uppbyggnad och struktur samt hur framtiden ser ut. Dagens upplägg för lagring hos Försäkringskassan specificeras och jämförs med den nya plattformen. Ett proof of concept genomförs på en testmiljö hos För- säkringskassan där en Hadoop plattform från Hortonworks används för att påvi- sa hur lagring kan fungera samt att så kallad ostrukturerad data kan lagras. Undersökningen påvisar inga teoretiska problem i att byta till den nya plattformen. Dock identifieras ett behov av att flytta hanteringen av data från inläsning till utläsning. Detta beror på att dagens lösning med relationsdatabaser kräver väl strukturerad data för att kunna lagra den medan Hadoop kan lagra allt utan någon struktur. Däremot kräver Hadoop mer handpåläggning när det kommer till att hämta data och arbeta med den.
|
24 |
Evaluating Presto as an SQL on Hadoop solution : A Case at TruecallerAhmed, Sahir January 2016 (has links)
Truecaller is a mobile application with over 200 million unique users worldwide. Every day truecaller stores over 1 billion rows of data that they use to analyse for improving their product. The data is stored in Hadoop, which is a framework for storing and analysing large amounts of data on a distributed file system. In order to be able to analyse these large amounts of data the analytics team needs a new solution for more lightweight, ad-hoc analysis. This thesis evaluates the performance of the query engine Presto to see if it meets the requirements to help the data analytics team at truecaller gain efficiency. By using a design-science methodology, Presto’s pros and cons are presented. Presto is recommended as a solution to be used together with the tools today for specific lightweight use cases for users that are familiar with the data sets used by the analytics team. Other solutions for future evaluation are also recommended before taking a final decision.Keywords: Hadoop, Big Data, Presto, Hive, SQL on Hadoop / <p>Validerat; 20160819 (global_studentproject_submitter)</p>
|
25 |
Implementation of the HadoopMapReduce algorithm on virtualizedshared storage systemsNethula, Shravya January 2016 (has links)
Context Hadoop is an open-source software framework developed for distributed storage and distributed processing of large sets of data. The implementation of the Hadoop MapReduce algorithm on virtualized shared storage by eliminating the concept of Hadoop Distributed File System (HDFS) is a challenging task. In this study, the Hadoop MapReduce algorithm is implemented on the Compuverde software that deals with virtualized shared storage of data. Objectives In this study, the effect of using virtualized shared storage with Hadoop framework is identified. The main objective of this study is to design a method to implement the Hadoop MapReduce algorithm on Compuverde software that deals with virtualized shared storage of big data. Finally, the performance of the MapReduce algorithm on Compuverde shared storage (Compuverde File System - CVFS) is evaluated and compared to the performance of the MapReduce algorithm on HDFS. Methods Initially a literature study is conducted to identify the effect of Hadoop implementation on virtualized shared storage. The Compuverde software is analyzed in detail during this literature study. The concepts of the MapReduce algorithms and the functioning of HDFS are scrutinized in detail. The next main research method that is adapted for this study is the implementation of a method where the Hadoop MapReduce algorithm is applied on the Compuverde software that deals with the virtualized shared storage by eliminating the HDFS. The next step is experimentation in which the performance of the implementation of the MapReduce algorithm on Compuverde shared storage (CVFS) in comparison with implementation of the MapReduce algorithm on Hadoop Distributed File System. Results The experiment is conducted in two different scenarios namely the CPU bound scenario and I/O bound scenario. In CPU bound scenario, the average execution time of WordCount program has a linear growth with respect to size of data set. This linear growth is observed for both the file systems, HDFS and CVFS. The same is the case with I/O bound scenario. There is linear growth for both the file systems. When the averages of execution time are plotted on the graph, both the file systems perform similarly in CPU bound scenario(multi-node environment). In the I/O bound scenario (multi-node environment), HDFS slightly out performs CVFS when the size of 1.0GB and both the file systems performs without much difference when the size of data set is 0.5GB and 1.5GB. Conclusions The MapReduce algorithm can be implemented on live data present in the virtualized shared storage systems without copying data into HDFS. In single node environment, distributed storage systems perform better than shared storage systems. In multi-node environment, when the CPU bound scenario is considered, both HDFS and CVFS file systems perform similarly. On the other hand, HDFS performs slightly better than CVFS for 1.0GB of data set in the I/O bound scenario. Hence we can conclude that distributed storage systems perform similar to the shared storage systems in both CPU bound and I/O bound scenarios in multi-node environment.
|
26 |
HopsWorks : A project-based access control model for HadoopMoré, Andre, Gebremeskel, Ermias January 2015 (has links)
The growth in the global data gathering capacity is producing a vast amount of data which is getting vaster at an increasingly faster rate. This data properly analyzed can represent great opportunity for businesses, but processing it is a resource-intensive task. Sharing can increase efficiency due to reusability but there are legal and ethical questions that arise when data is shared. The purpose of this thesis is to gain an in depth understanding of the different access control methods that can be used to facilitate sharing, and choose one to implement on a platform that lets user analyze, share, and collaborate on, datasets. The resulting platform uses a project based access control on the API level and a fine-grained role based access control on the file system to give full control over the shared data to the data owner. / I dagsläget så genereras och samlas det in oerhört stora mängder data som växer i ett allt högre tempo för varje dag som går. Den korrekt analyserade datan skulle kunna erbjuda stora möjligheter för företag men problemet är att det är väldigt resurskrävande att bearbeta. Att göra det möjligt för organisationer att dela med sig utav datan skulle effektivisera det hela tack vare återanvändandet av data men det dyker då upp olika frågor kring lagliga samt etiska aspekter när man delar dessa data. Syftet med denna rapport är att få en djupare förståelse för dom olika åtkomstmetoder som kan användas vid delning av data för att sedan kunna välja den metod som man ansett vara mest lämplig att använda sig utav i en plattform. Plattformen kommer att användas av användare som vill skapa projekt där man vill analysera, dela och arbeta med DataSets, vidare kommer plattformens säkerhet att implementeras med en projekt-baserad åtkomstkontroll på API nivå och detaljerad rollbaserad åtkomstkontroll på filsystemet för att ge dataägaren full kontroll över den data som delas
|
27 |
High performance Monte Carlo computation for finance risk data analysisZhao, Yu January 2013 (has links)
Finance risk management has been playing an increasingly important role in the finance sector, to analyse finance data and to prevent any potential crisis. It has been widely recognised that Value at Risk (VaR) is an effective method for finance risk management and evaluation. This thesis conducts a comprehensive review on a number of VaR methods and discusses in depth their strengths and limitations. Among these VaR methods, Monte Carlo simulation and analysis has proven to be the most accurate VaR method in finance risk evaluation due to its strong modelling capabilities. However, one major challenge in Monte Carlo analysis is its high computing complexity of O(n²). To speed up the computation in Monte Carlo analysis, this thesis parallelises Monte Carlo using the MapReduce model, which has become a major software programming model in support of data intensive applications. MapReduce consists of two functions - Map and Reduce. The Map function segments a large data set into small data chunks and distribute these data chunks among a number of computers for processing in parallel with a Mapper processing a data chunk on a computing node. The Reduce function collects the results generated by these Map nodes (Mappers) and generates an output. The parallel Monte Carlo is evaluated initially in a small scale MapReduce experimental environment, and subsequently evaluated in a large scale simulation environment. Both experimental and simulation results show that the MapReduce based parallel Monte Carlo is greatly faster than the sequential Monte Carlo in computation, and the accuracy level is maintained as well. In data intensive applications, moving huge volumes of data among the computing nodes could incur high overhead in communication. To address this issue, this thesis further considers data locality in the MapReduce based parallel Monte Carlo, and evaluates the impacts of data locality on the performance in computation.
|
28 |
Design and implementation of scalable hierarchical density based clusteringDhandapani, Sankari 09 November 2010 (has links)
Clustering is a useful technique that divides data points into groups, also known as clusters, such that the data points of the same cluster exhibit similar properties. Typical clustering algorithms assign each data point to at least one cluster. However, in practical datasets like microarray gene dataset, only a subset of the genes are highly correlated and the dataset is often polluted with a huge volume of genes that are irrelevant. In such cases, it is important to ignore the poorly correlated genes and just cluster the highly correlated genes.
Automated Hierarchical Density Shaving (Auto-HDS) is a non-parametric density based technique that partitions only the relevant subset of the dataset into multiple clusters while pruning the rest. Auto-HDS performs a hierarchical clustering that identifies dense clusters of different densities and finds a compact hierarchy of the clusters identified. Some of the key features of Auto-HDS include selection and ranking of clusters using custom stability criterion and a topologically meaningful 2D projection and visualization of the clusters discovered in the higher dimensional original space. However, a key limitation of Auto-HDS is that it requires O(n*n) storage, and O(n*n*logn) computational complexity, making it scale up to only a few 10s of thousands of points. In this thesis, two extensions to Auto-HDS are presented for lower dimensional datasets that can generate clustering identical to Auto-HDS but can scale to much larger datasets. We first introduce Partitioned Auto-HDS that provides significant reduction in time and space complexity and makes it possible to generate the Auto-HDS cluster hierarchy on much larger datasets with 100s of millions of data points. Then, we describe Parallel Auto-HDS that takes advantage of the inherent parallelism available in Partitioned Auto-HDS to scale to even larger datasets without a corresponding increase in actual run time when a group of processors are available for parallel execution. Partitioned Auto-HDS is implemented on top of GeneDIVER, a previously existing Java based streaming implementation of Auto-HDS, and thus it retains all the key features of Auto-HDS including ranking, automatic selection of clusters and 2D visualization of the discovered cluster topology. / text
|
29 |
An Efficient Platform for Large-Scale MapReduce ProcessingWang, Liqiang 15 May 2009 (has links)
In this thesis we proposed and implemented the MMR, a new and open-source MapRe- duce model with MPI for parallel and distributed programing. MMR combines Pthreads, MPI and the Google's MapReduce processing model to support multi-threaded as well as dis- tributed parallelism. Experiments show that our model signi cantly outperforms the leading open-source solution, Hadoop. It demonstrates linear scaling for CPU-intensive processing and even super-linear scaling for indexing-related workloads. In addition, we designed a MMR live DVD which facilitates the automatic installation and con guration of a Linux cluster with integrated MMR library which enables the development and execution of MMR applications.
|
30 |
Multi-agent-based DDoS detection on big data systemsOsei, Solomon January 2018 (has links)
The Hadoop framework has become the most deployed platform for processing Big Data. Despite its advantages, Hadoop s infrastructure is still deployed within the secured network perimeter because the framework lacks adequate inherent security mechanisms against various security threats. However, this approach is not sufficient for providing adequate security layer against attacks such as Distributed Denial of Service. Furthermore, current work to secure Hadoop s infrastructure against DDoS attacks is unable to provide a distributed node-level detection mechanism. This thesis presents a software agent-based framework that allows distributed, real-time intelligent monitoring and detection of DDoS attack at Hadoop s node-level. The agent s cognitive system is ingrained with cumulative sum statistical technique to analyse network utilisation and average server load and detect attacks from these measurements. The framework is a multi-agent architecture with transducer agents that interface with each Hadoop node to provide real-time detection mechanism. Moreover, the agents contextualise their beliefs by training themselves with the contextual information of each node and monitor the activities of the node to differentiate between normal and anomalous behaviours. In the experiments, the framework was exposed to TCP SYN and UDP flooding attacks during a legitimate MapReduce job on the Hadoop testbed. The experimental results were evaluated regarding performance metrics such as false-positive ratio, false-negative ratio and response time to attack. The results show that UDP and TCP SYN flooding attacks can be detected and confirmed on multiple nodes in nineteen seconds with 5.56% false-positive ration, 7.70% false-negative ratio and 91.5% success rate of detection. The results represent an improvement compared to the state-of the-art.
|
Page generated in 0.0153 seconds