1 |
Kritische Rolle von Hey2 und COUP-TFII in der Notch-Signalkaskade in humanen primären arteriellen und venösen EndothelzellenKorten, Slobodanka 06 July 2010 (has links) (PDF)
Arteriosklerose führt zu schwerwiegenden klinischen Komplikationen bei Herz-Kreislauf-erkrankungen, welche die führenden Todesursachen in den westlichen Industrieländern sind. Die Arteriosklerose ist typischerweise eine Erkrankung arterieller Gefäße und betrifft nicht die venöse Gefäßwand. Bei der Entstehung von Arteriosklerose spielen die Endothelzellen als Barrierezellen und Regulatoren der Gefäßfunktion eine Schlüsselrolle. Ein wichtiger Schwerpunkt der Forschung ist die Differenzierung der Endothelzellen. Arterielle und venöse Endothelzellen weisen schon im frühen Embryonalstadium unterschiedliche Phänotypen auf. Ein besseres Verständnis der arterio-venösen Differenzierung wäre von großer Bedeutung für antiarteriosklerotische Therapien. Darüber hinaus könnte eine Reprogrammierung (z.B. von Vene in Arterie) entscheidend für neue Therapieansätze bei der Senkung der Restenoserate venöser Bypässe von Patienten mit koronarer Herzkrankheit und bei AV-Shunt-Operationen von dialysepflichtigen Patienten sein.
In dieser Arbeit wurden differenzierte humane primäre arterielle und venöse Endothelzellen nach Genmodulation untersucht. Der Fokus der Genmodulation wurde auf das arterielle Markergen Hey2 und auf das venöse Markergen COUP-TFII gelegt. Das arterielle Markergen Hey2 ist ein Zielgen der Notch-Signalkaskade, während der molekulare Mechanismus der Rolle von COUP-TFII bei der venösen Differenzierung noch nicht bekannt ist. Daher wurde der Einfluss des arteriellen Markergens Hey2 und des venösen Markergens COUP-TFII auf die Notch-Signalkaskade untersucht, um ein besseres Verständnis über die molekularen Mechanismen der arterio-venösen Differenzierung zu gewinnen.
Da humane primäre Endothelzellen mit kommerziell verfügbaren Transfektionsmitteln schwer transfizierbar sind, wurde zunächst ein lentivirales Vektorsystem etabliert. Hiermit wurde eine erfolgreiche und stabile Genexpression bzw. Genrepression in arteriellen und venösen Endothelzellen ermöglicht.
Die Genmodulationen in arteriellen Endothelzellen, die durch die Expression des venösen Markergen COUP-TFII bzw. durch die Repression des arterellen Markergen Hey2 verursacht wurden, führten zu der neuen Erkenntnis, dass das venöse Markergen COUP-TFII in arteriellen Endothelzellen als ein Repressor des arteriellen Markergens Hey2 fungiert. Diese Repression wird durch eine direkte Bindung von COUP-TFII an den Hey2-Promotor vermittelt. Die COUP-TFII Expression bewirkte keine Veränderung in der Expression von Notch4, Dll4 und Nrp1. Dies könnte bedeuten, dass (i) COUP-TFII in arteriellen Endothelzellen kein Regulator von diesen Genen ist, (ii) Kooperationspartner von COUP-TFII fehlen, die in arteriellen Endothelzellen nicht vorhanden sind, oder (iii) der molekulare Mechanismus dieser Gene aufgrund seiner wichtigen Rolle nicht durch die Modifikation eines einzigen Gens beeinflussbar ist, da die Gene der Notch-Signalkaskade redundant kontrolliert werden.
In venösen Endothelzellen wurden Genmodulationen durch Expression des arteriellen Markergens Hey2 bzw. durch die Repression des venösen Markergens COUP-TFII durchgeführt. Eine Expression des arteriellen Markergens Hey2 in venösen Endothelzellen konnte nicht die Expression der Gene der Notch-Signalkaskade aktivieren. Dies bedeutet, dass die Regulation dieser Gene durch einen übergeordneten molekularen Mechanismus gesichert ist. Interessanterweise konnte die Expression von Hey2 eine Reduktion der Hey1 Expression bewirken. Dies ist ein alternativer Effekt von Hey2 im Vergleich zu arteriellen Endothelzellen. Eine Repression des venösen Markergens COUP-TFII konnte die Expression der Gene Dll4, EphrinB2 und EphB4 induzieren. Vermutlich ist die Induktion der EphB4 Expression ein Kompensationsmechanismus auf die reduzierte COUP-TFII Expression. COUP-TFII sichert den venösen Phänotyp wahrscheinlich durch die Repression von EphrinB2 und Dll4, wobei die Reduktion von Dll4 vermutlich eine größere Bedeutung hat. Da Dll4 ein Ligand und Aktivator der Notch-Signalkaskade ist, ist seine Repression entscheidend für venöse Endothelzellen.
Das arterielle Markergen Hey2 ist für die normale Embryogenese von großer Bedeutung, jedoch ist Hey2 als eines der Zielgene der Notch-Signalkaskade wahrscheinlich nicht in der Lage, molekulare Mechanismen, die zu unterschiedlichen endothelialen Phänotypen führen, zu aktivieren. Um arterielle Endothelzellen zu einem Reprogramming zu bewegen, wären wahrscheinlich Genmodulationen der Mitglieder der Notch-Signalkaskade, die upstream von Hey2 liegen, nötig. Hingegen ist die Rolle des venösen Markergens COUP-TFII in der Regulation der arterio-venösen Differenzierung von entscheidender Bedeutung. COUP-TFII spielt eine direkte Rolle in der Aufrechterhaltung der venösen Identität. Die Repression von COUP-TFII in venösen Endothelzellen bewirkt, dass sich die Expression des Gens Dll4, das die Notch-Signalkaskade aktiviert, in Richtung des arteriellen Expressionsniveaus bewegt. Für eine Reprogrammierung der venösen Endothelzellen in einen arteriellen Phänotyp ist das venöse Markergen COUP-TFII eines der Zielgene.
|
2 |
Kritische Rolle von Hey2 und COUP-TFII in der Notch-Signalkaskade in humanen primären arteriellen und venösen EndothelzellenKorten, Slobodanka 09 June 2010 (has links)
Arteriosklerose führt zu schwerwiegenden klinischen Komplikationen bei Herz-Kreislauf-erkrankungen, welche die führenden Todesursachen in den westlichen Industrieländern sind. Die Arteriosklerose ist typischerweise eine Erkrankung arterieller Gefäße und betrifft nicht die venöse Gefäßwand. Bei der Entstehung von Arteriosklerose spielen die Endothelzellen als Barrierezellen und Regulatoren der Gefäßfunktion eine Schlüsselrolle. Ein wichtiger Schwerpunkt der Forschung ist die Differenzierung der Endothelzellen. Arterielle und venöse Endothelzellen weisen schon im frühen Embryonalstadium unterschiedliche Phänotypen auf. Ein besseres Verständnis der arterio-venösen Differenzierung wäre von großer Bedeutung für antiarteriosklerotische Therapien. Darüber hinaus könnte eine Reprogrammierung (z.B. von Vene in Arterie) entscheidend für neue Therapieansätze bei der Senkung der Restenoserate venöser Bypässe von Patienten mit koronarer Herzkrankheit und bei AV-Shunt-Operationen von dialysepflichtigen Patienten sein.
In dieser Arbeit wurden differenzierte humane primäre arterielle und venöse Endothelzellen nach Genmodulation untersucht. Der Fokus der Genmodulation wurde auf das arterielle Markergen Hey2 und auf das venöse Markergen COUP-TFII gelegt. Das arterielle Markergen Hey2 ist ein Zielgen der Notch-Signalkaskade, während der molekulare Mechanismus der Rolle von COUP-TFII bei der venösen Differenzierung noch nicht bekannt ist. Daher wurde der Einfluss des arteriellen Markergens Hey2 und des venösen Markergens COUP-TFII auf die Notch-Signalkaskade untersucht, um ein besseres Verständnis über die molekularen Mechanismen der arterio-venösen Differenzierung zu gewinnen.
Da humane primäre Endothelzellen mit kommerziell verfügbaren Transfektionsmitteln schwer transfizierbar sind, wurde zunächst ein lentivirales Vektorsystem etabliert. Hiermit wurde eine erfolgreiche und stabile Genexpression bzw. Genrepression in arteriellen und venösen Endothelzellen ermöglicht.
Die Genmodulationen in arteriellen Endothelzellen, die durch die Expression des venösen Markergen COUP-TFII bzw. durch die Repression des arterellen Markergen Hey2 verursacht wurden, führten zu der neuen Erkenntnis, dass das venöse Markergen COUP-TFII in arteriellen Endothelzellen als ein Repressor des arteriellen Markergens Hey2 fungiert. Diese Repression wird durch eine direkte Bindung von COUP-TFII an den Hey2-Promotor vermittelt. Die COUP-TFII Expression bewirkte keine Veränderung in der Expression von Notch4, Dll4 und Nrp1. Dies könnte bedeuten, dass (i) COUP-TFII in arteriellen Endothelzellen kein Regulator von diesen Genen ist, (ii) Kooperationspartner von COUP-TFII fehlen, die in arteriellen Endothelzellen nicht vorhanden sind, oder (iii) der molekulare Mechanismus dieser Gene aufgrund seiner wichtigen Rolle nicht durch die Modifikation eines einzigen Gens beeinflussbar ist, da die Gene der Notch-Signalkaskade redundant kontrolliert werden.
In venösen Endothelzellen wurden Genmodulationen durch Expression des arteriellen Markergens Hey2 bzw. durch die Repression des venösen Markergens COUP-TFII durchgeführt. Eine Expression des arteriellen Markergens Hey2 in venösen Endothelzellen konnte nicht die Expression der Gene der Notch-Signalkaskade aktivieren. Dies bedeutet, dass die Regulation dieser Gene durch einen übergeordneten molekularen Mechanismus gesichert ist. Interessanterweise konnte die Expression von Hey2 eine Reduktion der Hey1 Expression bewirken. Dies ist ein alternativer Effekt von Hey2 im Vergleich zu arteriellen Endothelzellen. Eine Repression des venösen Markergens COUP-TFII konnte die Expression der Gene Dll4, EphrinB2 und EphB4 induzieren. Vermutlich ist die Induktion der EphB4 Expression ein Kompensationsmechanismus auf die reduzierte COUP-TFII Expression. COUP-TFII sichert den venösen Phänotyp wahrscheinlich durch die Repression von EphrinB2 und Dll4, wobei die Reduktion von Dll4 vermutlich eine größere Bedeutung hat. Da Dll4 ein Ligand und Aktivator der Notch-Signalkaskade ist, ist seine Repression entscheidend für venöse Endothelzellen.
Das arterielle Markergen Hey2 ist für die normale Embryogenese von großer Bedeutung, jedoch ist Hey2 als eines der Zielgene der Notch-Signalkaskade wahrscheinlich nicht in der Lage, molekulare Mechanismen, die zu unterschiedlichen endothelialen Phänotypen führen, zu aktivieren. Um arterielle Endothelzellen zu einem Reprogramming zu bewegen, wären wahrscheinlich Genmodulationen der Mitglieder der Notch-Signalkaskade, die upstream von Hey2 liegen, nötig. Hingegen ist die Rolle des venösen Markergens COUP-TFII in der Regulation der arterio-venösen Differenzierung von entscheidender Bedeutung. COUP-TFII spielt eine direkte Rolle in der Aufrechterhaltung der venösen Identität. Die Repression von COUP-TFII in venösen Endothelzellen bewirkt, dass sich die Expression des Gens Dll4, das die Notch-Signalkaskade aktiviert, in Richtung des arteriellen Expressionsniveaus bewegt. Für eine Reprogrammierung der venösen Endothelzellen in einen arteriellen Phänotyp ist das venöse Markergen COUP-TFII eines der Zielgene.
|
3 |
Implication de la transition endothélium-mésenchyme dans le développement des complications digestives des radiothérapies. / Implication of endothelial to mesenchymal cell transition in the development of healthy digestive tissue injury following radiotherapyMintet, Elodie 16 December 2015 (has links)
La fibrose digestive est une complication secondaire tardive de la radiothérapie dans 5 à 10% des patients traités pour des tumeurs de la sphère abdomino-pelvienne. Elle est caractérisée par une accumulation de matrice extracellulaire synthétisée par les cellules mésenchymateuses. La transition endothélium-mésenchyme (EndoMT), est un processus au cours duquel les cellules endothéliales expriment des marqueurs mésenchymateux en réponse au stress. L'EndoMT a été identifiée comme une source de cellules mésenchymateuses participant à la fibrose chez des patients atteints de maladie inflammatoire chronique de l'intestin. Cette étude s'est donc concentrée sur le rôle de l'EndoMT dans le développement de la fibrose intestinale radio-induite et d'identifier des cibles thérapeutiques potentielles.Nos résultats ont révélé pour la première fois l'existence de l'EndoMT au niveau de la paroi rectale chez l'homme après radiothérapie. L'utilisation de souris exprimant la GFP sous le contrôle du promoteur endothélial Tie2, nous a permis de localiser les cellules mésenchymateuses possédant une origine endothéliale, confirmant l'existence de l'EndoMT radio-induite dans notre modèle préclinique de rectite radique. In vitro, nous avons confirmé le changement phénotypique des cellules endothéliales irradiées.Ce projet s'est ensuite concentré sur un acteur potentiel de l'EndoMT radio-induite, Hey2. La génération d'un modèle murin déficient pour Hey2 dans l'endothélium a révélé une diminution des dommages muqueux et de la fréquence l'EndoMT après irradiation. L'inhibition de Hey2 représente une nouvelle approche thérapeutique attrayante dans la réduction de la fibrose digestive radio-induite. / Fibrosis is identified as a chronic side effect occurring after radiotherapy for pelvic tumors in 5 to 10 % of patients. This pathological healing process is characterized by an accumulation of extracellular matrix synthesized by mesenchymal cells. Endothelial to mesenchymal transition (EndoMT), is a processes during which endothelial cells express mesenchymal markers in response to stress. EndoMT is identified as a source of mesenchymal cells taking part to fibrosis development in patients suffering from inflammatory bowel diseases. Then, this study focused on the potential participation of EndoMT in radiation-induced intestinal fibrosis and tried to identify new therapeutics targets. Interestingly, our results showed for the first time EndoMT in rectal tissues from patients who developed radiation proctitis following radiotherapy. We used an in vivo approach to follow the mesenchymal cells having an endothelial origin in a mouse model expressing the GFP under the control of an endothelial promoter, Tie2 (Tie2-GFP). Thereby, our results confirmed the existence of radiation-induced EndoMT in our preclinical model of radiation proctitis. In vitro characterization showed that irradiation induced a modulation of the endothelial phenotype through a mesenchymal profile, a hallmark of EndoMT. This project also focused on a potential molecular actor, Hey2. In this context, we generated a transgenic mouse model in which Hey2 gene expression is repressed specifically in the endothelial compartment and observed a decrease in radiation-induced mucosal damages and EndoMT frequency. Consequently, inhibiting Hey2 expression could represent a new interesting therapeutic strategy.
|
4 |
Regulation des Transkriptionsfaktors COUP‐TFII durch Glukose und den NOTCH‐Signalweg in EndothelzellenBrunßen, Coy 23 August 2010 (has links) (PDF)
Erkrankungen des Herz-Kreislaufsystems sind die häufigste Todesursache in Deutschland. Eine gestörte Funktion des Gefäßendothels spielt bei der Entstehung von Herz-Kreislauferkrankungen eine Schlüsselrolle. Das Risiko einer kardiovaskulären Erkrankung ist bei Diabetikern stark erhöht. Der Transkriptionsfaktor COUP-TFII spielt eine essentielle Rolle im Glukosemetabolismus. Gleichzeitig ist er für die Differenzierung von Endothelzellen von großer Bedeutung. Für die Differenzierung und Aufrechterhaltung des arteriellen und venösen Phänotyps von Endothelzellen sind dabei maßgeblich der NOTCH-Signalweg und insbesondere die Transkriptionsfaktoren HEY2 (arteriell) und COUP-TFII (venös) verantwortlich. Gesteigerte Glukosespiegel könnten somit Auswirkungen auf die Differenzierung von Endothelzellen haben und damit einen neuen Mechanismus für das erhöhte Risiko von Gefäßerkrankungen bei Diabetikern darstellen.
Im Rahmen der Arbeit konnte die exklusive Expression von COUP-TFII im Zellkern von humanen venösen Endothelzellen nachgewiesen werden. Humane arterielle Endothelzellen zeigten keine Expression von COUP-TFII. Außerdem konnte im Rahmen der Arbeit erstmals die spezifische Expression von COUP-TFII in humanen Endothelzellen der Koronararterie nachgewiesen werden. Die Untersuchung der COUP-TFII Promotoraktivität konnte das Expressionsmuster von COUP-TFII bestätigen. Der Promotor zeigte sowohl in den venösen Endothelzellen der humanen Nabelschnur als auch in den humanen Endothelzellen der Koronararterie Aktivität.
Die kurzzeitige Stimulation von venösen Endothelzellen mit Glukose führte zu einem starken Anstieg der COUP-TFII Expression. Eine Translokation von COUP-TFII aus dem Zellkern in das Zytoplasma konnte nicht nachgewiesen werden. Die Langzeitstimulation führte interessanterweise zu einer Verminderung der COUP-TFII Expression und zu einer Erhöhung der Expression von E-Selektin. In beiden Fällen zeigte sich keine Beeinträchtigung der Expression durch Insulin. Die durchgeführten Untersuchungen schließen eine Beteiligung des AKT-Signalweges an der Regulation aus. Es zeigte sich jedoch, dass humane venöse Endothelzellen als Insulin-sensitives Gewebe mit funktionsfähigem AKT-Signalweg einzustufen sind. Stimulationsversuche mit L-Glukose zeigten keine Regulation der COUP-TFII Expression. Eine osmotische Wirksamkeit der hohen Glukosekonzentration auf die Expression von COUP-TFII konnte somit ausgeschlossen werden. Die Deletionsanalyse des COUP-TFII Promotors konnte einen Glukose-sensitiven Bereich innerhalb des COUP-TFII Promotors identifizieren. Weiterhin konnte die Repression der Aktivität des COUP-TFII Promotors durch Hypoxie nachgewiesen werden.
Eine der wichtigen Aufgaben von Endothelzellen ist die von der endothelialen NO-Synthase (eNOS) katalysierte Bildung von Stickstoffmonoxid (NO). NO hemmt die Expression des Adhäsionsmoleküls E-Selektin. Eine verringerte NO-Produktion hat die Ausbildung einer endothelialen Dysfunktion zur Folge. In dieser Arbeit konnte erstmals eine Erhöhung der eNOS Expression nach Verminderung der Expression von COUP-TFII in humanen venösen Endothelzellen gezeigt werden. Diese könnte die Ursache für die Verminderung der E-Selektin Expression nach Herabregulation von COUP-TFII sein. Durch die Anwendung einer Plattenkegel-Viskometer-Apparatur konnte gezeigt werden, dass die NO-Abgabe entscheidend von den Strömungsbedingungen und Scherkräften abhängig ist. Die Stimulation arterieller Endothelzellen mit laminarer oder oszillatorischer Schubspannung führte zu einer Erhöhung der NO-Abgabe. Turbulente Schubspannung zeigte dagegen keinen Einfluss auf die NO-Abgabe. Durch Überexpression von COUP-TFII in Kombination mit laminarer Schubspannung wurde die NO-Abgabe weiter gesteigert. Die gezeigte direkte Regulation der HEY2 und COUP-TFII Promotoraktivität durch geänderte Strömungsbedingungen spielt in diesem Prozess möglicherweise eine bedeutende Rolle.
Die beschriebene Regulation von COUP-TFII durch Glukose in Endothelzellen könnte eine neue Erklärung für die gesteigerte Rate an Gefäßerkrankungen von Typ2-Diabetikern darstellen. Bei der Regulation der endothelialen NO-Synthase und E-Selektin durch COUP-TFII handelt es sich möglicherweise um einen neuen, anti-adhäsiven Feedback-Mechanismus, der zur Verringerung der Leukozyten-Adhäsion an Endothelzellen und damit zur Gefäßprotektion beitragen könnte.
Die differentielle Expression der arteriellen Markergene HEY2 und CD44 konnte in humanen venösen und arteriellen Endothelzellen gezeigt werden. Die Untersuchung der Expression von FOXC1 legt nahe, dass es sich bei diesem Transkriptionsfaktor ebenfalls um ein in Endothelzellen arteriovenös differentiell exprimiertes Gen handelt. Die differentielle Exprimierung von HEY2 in Endothelzellen konnte auf transkriptioneller Ebene zusätzlich durch ein HEY2 Promotor Funktionsassay gezeigt werden.
Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Induktion der endogenen Expression der NOTCH-Zielgene HEY1 und HEY2 in HEK 293T Zellen. In dem Zelltyp durchgeführte Reportergenassays zeigten ebenfalls eine deutliche Aktivierung des HEY2 Promotors durch die Überexpression der NOTCH1 intrazellulären Domäne. Durch eine Deletionsanalyse konnte der Bereich, der für die Aktivierung verantwortlichen DNA-Sequenz-Motive stark eingegrenzt werden. Weiterhin konnte die Induktion des HEY2 Promotors durch VEGF und seine Repression durch einen γ-Sekretase Inhibitor nachgewiesen werden.
Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Verringerung der mRNA- und Protein-Expression von COUP-TFII in HEK 293T Zellen. Dieses Ergebnis konnte zusätzlich durch ein COUP-TFII Promotor Aktivitätsassay nach Überexpression des NOTCH-Zielgens HEY2 gezeigt werden. Die Deletionsanalyse des COUP-TFII Promotors lässt eine direkte Inhibition von COUP-TFII durch HEY2 vermuten. Die Überexpression von COUP-TFII führte zu einer starken Induktion der COUP-TFII mRNA- und Protein-Expression, jedoch weder in HEK 293T Zellen noch in Endothelzellen zu einer Änderung der HEY2 Promotoraktivität.
Die Überexpression von FOXC1 und FOXC2 bewirkte eine Inhibition der HEY2 Promotoraktivität in HEK 293T Zellen. Die in der Arbeit gezeigte hohe Expression von FOXC1 in venösen Endothelzellen könnte somit in Kombination mit COUP-TFII für die komplette Repression der Aktivität des HEY2 Promotors in venösen Endothelzellen verantwortlich sein. Die durchgeführte Deletionsanalyse des HEY2 Promotors legt eine direkte Bindung von FOXC1 und FOXC2 an den HEY2 Promotor nahe.
Die erzielten Ergebnisse dieser Arbeit sprechen im Kontext mit der Literatur für eine zelltypspezifische Regulierung/Aktivierung des NOTCH-Signalweges und lassen folgendes Modell zur Differenzierung des venösen oder arteriellen endothelialen Phänotyps vermuten: Die Determinierung des Phänotyps wird entschieden durch das Gleichgewicht der Expression der Interaktionspartner des NOTCH-Signalweges. Der VEGF Co-Rezeptor NRP1 und der VEGFR2 sind die entscheidenden Aktivatoren des NOTCH-Signalweges. Die Balance der Bindung des Repressors COUP-TFII an den NRP1 und VEGFR2 Promotor sowie des Aktivatorkomplexes NICD/RBP-JК an den NRP1 Promotor sind damit entscheidend für die Aktivität des NOTCH-Signalweges. NRP1 bindet VEGF und steigert gleichzeitig dessen Bindung an den VEGFR2. Dies führt zur Induktion von DLL4. Die Bindung von DLL4 an die NOTCH1/4 Rezeptoren führt zur Abspaltung der NOTCH intrazellulären Domäne (NICD) des Rezeptors. Die NICD wandert in den Zellkern und aktiviert dort zusammen im Komplex mit dem Transkriptionsfaktor RBP-JК die Gene HEY1, HEY2 und NRP1. Die Transkriptionsfaktoren HEY1 und HEY2 reprimieren über einen Feedback-Mechanismus direkt die Aktivität des COUP-TFII Promotors.
|
5 |
Regulation des Transkriptionsfaktors COUP‐TFII durch Glukose und den NOTCH‐Signalweg in Endothelzellen: Regulation des Transkriptionsfaktors COUP‐TFII durch Glukose und den NOTCH‐Signalweg in EndothelzellenBrunßen, Coy 12 August 2010 (has links)
Erkrankungen des Herz-Kreislaufsystems sind die häufigste Todesursache in Deutschland. Eine gestörte Funktion des Gefäßendothels spielt bei der Entstehung von Herz-Kreislauferkrankungen eine Schlüsselrolle. Das Risiko einer kardiovaskulären Erkrankung ist bei Diabetikern stark erhöht. Der Transkriptionsfaktor COUP-TFII spielt eine essentielle Rolle im Glukosemetabolismus. Gleichzeitig ist er für die Differenzierung von Endothelzellen von großer Bedeutung. Für die Differenzierung und Aufrechterhaltung des arteriellen und venösen Phänotyps von Endothelzellen sind dabei maßgeblich der NOTCH-Signalweg und insbesondere die Transkriptionsfaktoren HEY2 (arteriell) und COUP-TFII (venös) verantwortlich. Gesteigerte Glukosespiegel könnten somit Auswirkungen auf die Differenzierung von Endothelzellen haben und damit einen neuen Mechanismus für das erhöhte Risiko von Gefäßerkrankungen bei Diabetikern darstellen.
Im Rahmen der Arbeit konnte die exklusive Expression von COUP-TFII im Zellkern von humanen venösen Endothelzellen nachgewiesen werden. Humane arterielle Endothelzellen zeigten keine Expression von COUP-TFII. Außerdem konnte im Rahmen der Arbeit erstmals die spezifische Expression von COUP-TFII in humanen Endothelzellen der Koronararterie nachgewiesen werden. Die Untersuchung der COUP-TFII Promotoraktivität konnte das Expressionsmuster von COUP-TFII bestätigen. Der Promotor zeigte sowohl in den venösen Endothelzellen der humanen Nabelschnur als auch in den humanen Endothelzellen der Koronararterie Aktivität.
Die kurzzeitige Stimulation von venösen Endothelzellen mit Glukose führte zu einem starken Anstieg der COUP-TFII Expression. Eine Translokation von COUP-TFII aus dem Zellkern in das Zytoplasma konnte nicht nachgewiesen werden. Die Langzeitstimulation führte interessanterweise zu einer Verminderung der COUP-TFII Expression und zu einer Erhöhung der Expression von E-Selektin. In beiden Fällen zeigte sich keine Beeinträchtigung der Expression durch Insulin. Die durchgeführten Untersuchungen schließen eine Beteiligung des AKT-Signalweges an der Regulation aus. Es zeigte sich jedoch, dass humane venöse Endothelzellen als Insulin-sensitives Gewebe mit funktionsfähigem AKT-Signalweg einzustufen sind. Stimulationsversuche mit L-Glukose zeigten keine Regulation der COUP-TFII Expression. Eine osmotische Wirksamkeit der hohen Glukosekonzentration auf die Expression von COUP-TFII konnte somit ausgeschlossen werden. Die Deletionsanalyse des COUP-TFII Promotors konnte einen Glukose-sensitiven Bereich innerhalb des COUP-TFII Promotors identifizieren. Weiterhin konnte die Repression der Aktivität des COUP-TFII Promotors durch Hypoxie nachgewiesen werden.
Eine der wichtigen Aufgaben von Endothelzellen ist die von der endothelialen NO-Synthase (eNOS) katalysierte Bildung von Stickstoffmonoxid (NO). NO hemmt die Expression des Adhäsionsmoleküls E-Selektin. Eine verringerte NO-Produktion hat die Ausbildung einer endothelialen Dysfunktion zur Folge. In dieser Arbeit konnte erstmals eine Erhöhung der eNOS Expression nach Verminderung der Expression von COUP-TFII in humanen venösen Endothelzellen gezeigt werden. Diese könnte die Ursache für die Verminderung der E-Selektin Expression nach Herabregulation von COUP-TFII sein. Durch die Anwendung einer Plattenkegel-Viskometer-Apparatur konnte gezeigt werden, dass die NO-Abgabe entscheidend von den Strömungsbedingungen und Scherkräften abhängig ist. Die Stimulation arterieller Endothelzellen mit laminarer oder oszillatorischer Schubspannung führte zu einer Erhöhung der NO-Abgabe. Turbulente Schubspannung zeigte dagegen keinen Einfluss auf die NO-Abgabe. Durch Überexpression von COUP-TFII in Kombination mit laminarer Schubspannung wurde die NO-Abgabe weiter gesteigert. Die gezeigte direkte Regulation der HEY2 und COUP-TFII Promotoraktivität durch geänderte Strömungsbedingungen spielt in diesem Prozess möglicherweise eine bedeutende Rolle.
Die beschriebene Regulation von COUP-TFII durch Glukose in Endothelzellen könnte eine neue Erklärung für die gesteigerte Rate an Gefäßerkrankungen von Typ2-Diabetikern darstellen. Bei der Regulation der endothelialen NO-Synthase und E-Selektin durch COUP-TFII handelt es sich möglicherweise um einen neuen, anti-adhäsiven Feedback-Mechanismus, der zur Verringerung der Leukozyten-Adhäsion an Endothelzellen und damit zur Gefäßprotektion beitragen könnte.
Die differentielle Expression der arteriellen Markergene HEY2 und CD44 konnte in humanen venösen und arteriellen Endothelzellen gezeigt werden. Die Untersuchung der Expression von FOXC1 legt nahe, dass es sich bei diesem Transkriptionsfaktor ebenfalls um ein in Endothelzellen arteriovenös differentiell exprimiertes Gen handelt. Die differentielle Exprimierung von HEY2 in Endothelzellen konnte auf transkriptioneller Ebene zusätzlich durch ein HEY2 Promotor Funktionsassay gezeigt werden.
Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Induktion der endogenen Expression der NOTCH-Zielgene HEY1 und HEY2 in HEK 293T Zellen. In dem Zelltyp durchgeführte Reportergenassays zeigten ebenfalls eine deutliche Aktivierung des HEY2 Promotors durch die Überexpression der NOTCH1 intrazellulären Domäne. Durch eine Deletionsanalyse konnte der Bereich, der für die Aktivierung verantwortlichen DNA-Sequenz-Motive stark eingegrenzt werden. Weiterhin konnte die Induktion des HEY2 Promotors durch VEGF und seine Repression durch einen γ-Sekretase Inhibitor nachgewiesen werden.
Die Überexpression der NOTCH1 intrazellulären Domäne führte zur Verringerung der mRNA- und Protein-Expression von COUP-TFII in HEK 293T Zellen. Dieses Ergebnis konnte zusätzlich durch ein COUP-TFII Promotor Aktivitätsassay nach Überexpression des NOTCH-Zielgens HEY2 gezeigt werden. Die Deletionsanalyse des COUP-TFII Promotors lässt eine direkte Inhibition von COUP-TFII durch HEY2 vermuten. Die Überexpression von COUP-TFII führte zu einer starken Induktion der COUP-TFII mRNA- und Protein-Expression, jedoch weder in HEK 293T Zellen noch in Endothelzellen zu einer Änderung der HEY2 Promotoraktivität.
Die Überexpression von FOXC1 und FOXC2 bewirkte eine Inhibition der HEY2 Promotoraktivität in HEK 293T Zellen. Die in der Arbeit gezeigte hohe Expression von FOXC1 in venösen Endothelzellen könnte somit in Kombination mit COUP-TFII für die komplette Repression der Aktivität des HEY2 Promotors in venösen Endothelzellen verantwortlich sein. Die durchgeführte Deletionsanalyse des HEY2 Promotors legt eine direkte Bindung von FOXC1 und FOXC2 an den HEY2 Promotor nahe.
Die erzielten Ergebnisse dieser Arbeit sprechen im Kontext mit der Literatur für eine zelltypspezifische Regulierung/Aktivierung des NOTCH-Signalweges und lassen folgendes Modell zur Differenzierung des venösen oder arteriellen endothelialen Phänotyps vermuten: Die Determinierung des Phänotyps wird entschieden durch das Gleichgewicht der Expression der Interaktionspartner des NOTCH-Signalweges. Der VEGF Co-Rezeptor NRP1 und der VEGFR2 sind die entscheidenden Aktivatoren des NOTCH-Signalweges. Die Balance der Bindung des Repressors COUP-TFII an den NRP1 und VEGFR2 Promotor sowie des Aktivatorkomplexes NICD/RBP-JК an den NRP1 Promotor sind damit entscheidend für die Aktivität des NOTCH-Signalweges. NRP1 bindet VEGF und steigert gleichzeitig dessen Bindung an den VEGFR2. Dies führt zur Induktion von DLL4. Die Bindung von DLL4 an die NOTCH1/4 Rezeptoren führt zur Abspaltung der NOTCH intrazellulären Domäne (NICD) des Rezeptors. Die NICD wandert in den Zellkern und aktiviert dort zusammen im Komplex mit dem Transkriptionsfaktor RBP-JК die Gene HEY1, HEY2 und NRP1. Die Transkriptionsfaktoren HEY1 und HEY2 reprimieren über einen Feedback-Mechanismus direkt die Aktivität des COUP-TFII Promotors.
|
Page generated in 0.0176 seconds