• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Techniques of detection, estimation and coding for fading channels

Jayasinghe, Sankissa G. January 1989 (has links)
The thesis describes techniques of detection, coding and estimation, for use in high speed serial modems operating over fading channels such as HF radio and land mobile radio links. The performance of the various systems that employ the above techniques are obtained via computer simulation tests. A review of the characteristics of HF radio channels is first presented, leading to the development of an appropriate channel model which imposes Rayleigh fading on the transmitted signal. Detection processes for a 4.8 kbit/s HF radio modem are then discussed, the emphasis, here, being on variants of the maximum likelihood detector that is implemented by the Viterbi algorithm. The performance of these detectors are compared with that of a nonlinear equalizer operating under the same conditions, and the detector which offers the best compromise between performance and complexity is chosen for further tests. Forward error correction, in the form of trellis coded modulation, is next introduced. An appropriate 8-PSK coded modulation scheme is discussed, and its operation over the above mentioned HF radio modem is evaluated. Performance comparisons are made of the coded and uncoded systems. Channel estimation techniques for fast fading channels akin to cellular land mobile radio links, are next discussed. A suitable model for a fast fading channel is developed, and some novel estimators are tested over this channel. Computer simulation tests are also used to study the feasibility of the simultaneous transmission of two 4-level QAM signals occupying the same frequency band, when each of these signals are transmitted at 24 kbit/s over two independently fading channels, to a single receiver. A novel combined detector/estimator is developed for this purpose. Finally, the performance of the complete 4.8 kbit/s HF radio modem is obtained, when all the functions of detection, estimation and prefiltering are present, where the prefilter and associated processor use a recently developed technique for the adjustment of its tap gains and for the estimation of the minimum phase sampled impulse response.
2

Development of a phased-array ionospheric imaging system

Bruce, Nicholas 10 April 2019 (has links)
A novel approach to ionospheric imaging with the purpose of weather/distaster prediction and climate study is introduced. This feasibility study combines traditional material imaging techniques with high frequency (HF) radio via SDR (software defined radio) systems in order to capture three-dimensional images of the atmosphere. An experiment is devised and the necessary instrumentation built in order to capture coherent images of the ionosphere. The experimental results show these three-dimensional images as well as a novel approach to measuring ionospheric height. The novelty of the research comes from the use of a closely spaced phased-array of radio antennas in conjunction with a post-correlation beamformer repurposed from radio astronomy. Experiments were run at both the University of Victoria and DRAO (Dominion Radio Astrophysical Observatory), the results which led to a successful proposal for extending the research onto a larger array with support from research groups in New Mexico. / Graduate
3

Performance Evaluation of a Wireless Protocol for Mesh Networking under the Influence of Broadband Electromagnetic Noise

Woo, Lily Lai Yam 09 April 2010 (has links)
Migrating from a wired to a wireless implementation for communication system used in industrial applications is a logical move to avoid the many shortcomings associated with wires. When operated under harsh environments, those wires can break and could cause not only damage to the system but also endanger human lives. However, it is not well documented how well a wireless protocol can work under such harsh industrial environments. This thesis attempts to answer this research question in the point of view of gauging the performance of a wireless protocol under the influence of electromagnetic noise. More specifically, the type of noise signal that is the focus of this investigation is the random, pulsed type (e.g., discharges caused by sparking) that creates a hyperbolic broadband disturbance in the frequency domain. Consequently, a fractal noise model is used to study noise of this nature. The steps toward achieving this goal include: requirements gathering, wireless technology selection; noise modelling and synthesis; real noise capture and analysis to validate the chosen noise model; high-frequency fractal noise emulation in hardware; the use of a novel noise injection method for empirical work; and the conducting of a controlled synthetic noise-to-wireless node performance evaluation to obtain performance measure in the form of packet error rate (PER). Performance data in terms of PER versus signal-to-noise ratio (SNR) for various nodes separation have been collected. There were three significant findings: the obtained performance curves follow the standard 'S' trend; for a specific desired reliability (denoted by a certain PER), the SNR at the transmitter needs to be boosted as the correlation of the noise being present increases; and the maximum distance between nodes separation for a certain reliability to be achieved depends exponentially with the transmitter‟s SNR. The relationship in the third finding assists in placement of wireless nodes, which in turn can determine the minimum amount of wireless nodes required for an industrial system to reach the desired system reliability, thus boasting network cost saving.
4

Performance Evaluation of a Wireless Protocol for Mesh Networking under the Influence of Broadband Electromagnetic Noise

Woo, Lily Lai Yam 09 April 2010 (has links)
Migrating from a wired to a wireless implementation for communication system used in industrial applications is a logical move to avoid the many shortcomings associated with wires. When operated under harsh environments, those wires can break and could cause not only damage to the system but also endanger human lives. However, it is not well documented how well a wireless protocol can work under such harsh industrial environments. This thesis attempts to answer this research question in the point of view of gauging the performance of a wireless protocol under the influence of electromagnetic noise. More specifically, the type of noise signal that is the focus of this investigation is the random, pulsed type (e.g., discharges caused by sparking) that creates a hyperbolic broadband disturbance in the frequency domain. Consequently, a fractal noise model is used to study noise of this nature. The steps toward achieving this goal include: requirements gathering, wireless technology selection; noise modelling and synthesis; real noise capture and analysis to validate the chosen noise model; high-frequency fractal noise emulation in hardware; the use of a novel noise injection method for empirical work; and the conducting of a controlled synthetic noise-to-wireless node performance evaluation to obtain performance measure in the form of packet error rate (PER). Performance data in terms of PER versus signal-to-noise ratio (SNR) for various nodes separation have been collected. There were three significant findings: the obtained performance curves follow the standard 'S' trend; for a specific desired reliability (denoted by a certain PER), the SNR at the transmitter needs to be boosted as the correlation of the noise being present increases; and the maximum distance between nodes separation for a certain reliability to be achieved depends exponentially with the transmitter‟s SNR. The relationship in the third finding assists in placement of wireless nodes, which in turn can determine the minimum amount of wireless nodes required for an industrial system to reach the desired system reliability, thus boasting network cost saving.
5

The fading of signals propagating in the ionosphere for wide bandwidth high-frequency radio systems.

Yau, Kin Shing Bobby January 2008 (has links)
The use of High-Frequency (HF) radio-wave propagation in the ionosphere remains prevalent for applications such as long-range communication, target detection and commercial broadcasting. The ionosphere presents a challenging channel for radio-wave propagation as it is a varying medium dependent on a number of external factors. Of the many adverse effects of ionospheric propagation, signal fading is one of the most difficult to eliminate due to its unpredictable nature. Increase in the knowledge of how the ionospheric channel affects the propagating signals, in particular fading of the signals, will drive the continual improvements in the reliability and performance of modern wide-bandwidth HF systems. This is the underlying motivation for the study of signal fading of HF radio-waves propagating through the ionosphere, from both the theoretical and experimental perspectives, with the focus of application to modern wide bandwidth HF systems. Furthermore, it is the main objective of this investigation to address the lacking in the current literature of a simple analytical signal fading model for wideband HF systems that relates the physics of the ionospheric irregularities to the observable propagation effects due to the irregularities, and one that is verified by experimental observations. An original approach was taken in the theoretical investigation to develop an analytical model that combines the effects of signal fading and directly relating them to the ionospheric irregularities that are causing the fading. The polarisation fading model (PFM) is a combination of geometric optics, perturbation techniques and frequency offset techniques to derive expressions for the Faraday rotation of the radio-wave propagating in the ionosphere. Using the same notation as the PFM, the amplitude fading model (AFM) extends the Complex Amplitude concept using perturbation techniques and Green’s functions solution to arrive at a set of expressions that describes the focussing and defocussing effects of the wave. The PFM and AFM, together with expressions for combining the effects of multiple propagation paths, provide a simple analytic model that completely describes the fading of the signal propagating in the ionosphere. This theoretical model was implemented into an efficient ionospheric propagation simulator (IPS) from which simulations of wide bandwidth HF signals propagating through the ionosphere can be undertaken. As an example of the type of results produced by the IPS, for a typical 1200km path in the north-south direction with the ionospheric channel under the influence of a travelling ionospheric disturbance (TID), a 10 MHz radio-wave signal in one-hop path is shown to be affected by polarisation fading with fading periods in the order of minutes, and a fading bandwidth in the order of 100 kHz. Further results generated by the IPS have shown to be consistent with the results reported elsewhere in the literature. The experimental investigation involves the study of signal fading from observations of real signals propagating in the ionosphere, a major part of which is the development of a digital compact channel probe (CCP) capable of operating in dual-polarisation mode, and the characterisation of such systems to ensure that data collected are not compromised by the non-idealities of the individual devices contained within the system. The CCP was deployed in experiments to collect transmissions of HF frequency-modulated continuouswave (FMCW) radio signals from the Jindalee Over-the-Horizon radar (OTHR) in dualpolarisation. Analyses of the collected data showed the full anatomy of fading of signals propagating in the ionosphere for both horizontal and vertical polarisations, the results of which are consistent with that from the IPS and thus verifying the validity of the theoretical model of fading. Further experimental results showed that in majority of the observations polarisation fading is present but can be masked by multi-path fading, and confirming that periods of rapid signal fading are associated with rapid changes in the ionospheric channel. From the theoretical and experimental investigations, the major achievement is the successful development of an efficient propagation simulator IPS based on the simple analytical expressions derived in the PFM and AFM theoretical models of signal fading, which has produced sensible signal fading results that are verified by experimental observations. One of the many outcomes of this investigation is that polarisation diversity has the potential to bring improvements to the quality of wide-bandwidth HF signals in a fading susceptible propagation channel. The combination of an efficient propagation simulator IPS based on theoretical signal fading model and the experimental data collection by the dual-polarisation CCP is a major step in allowing one to fully understand the different aspects of fading of signals propagating in the ionosphere, which sets a solid foundation for further research into the design of wide bandwidth HF systems and the possible fading mitigation techniques. / Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 2008
6

Occurrence and Causes of F-region Echoes for the Canadian PolarDARN/SuperDARN Radars

2013 March 1900 (has links)
This thesis has two major objectives. The first objective is to investigate the seasonal and diurnal variations in occurrence of HF coherent echoes. We assess F-region echo occurrence rates for the PolarDARN HF radars at Inuvik (INV) and Rankin Inlet (RKN) and the auroral zone SuperDARN radars at Saskatoon (SAS) and Prince George (PGR) for the period of 2007-2010. We show that the INV and RKN PolarDARN radars show comparable rates of echo occurrence all the time and they detect 1.5-2.5 times more echoes through ½-hop propagation mode (MLATs=80°-85°) than the SAS and PGR SuperDARN radars through 1½-hope propagation mode (MLATs=75°-80°). For all four radars, the winter occurrence rates are about ~2 times higher than the summer rates. For observations in the dusk, midnight and dawn sectors, equinoctial maxima are evident. The pattern of echo occurrence in terms of MLT/season is about the same for all radars with clear maxima near noon during winters and summers and enhanced (as compared to other time of the day) occurrence rates during equinoctial dusk and dawn hours. Additionally, to investigate the effect of solar cycle on occurrence of F-region echoes, we consider the near noon and near midnight echo occurrence rates for the Saskatoon radar over the period of 1994-2010. We show that there is a strong, by a factor of ~10, increase in SAS night-side echo occurrence towards solar maximum. The effect does not exist for the dayside echoes; moreover, a decrease in number of echoes, by a factor of ~2, was discovered for the declining phase of the solar cycle. The second objective is to evaluate the electron density and the electric field as factors controlling the occurrence of F-region echoes. We use observations of these two ionospheric parameters measured by CADI ionosonde and RKN observations of echo occurrence rates over Resolute Bay (MLAT=83°). We show that there is a correlation in changes of echo occurrence and electron density changes for 3 years of radar-ionosonde joint operation (2008-2010). The comparison of radar-ionosonde data shows that the enhanced echo occurrence at near noon hours during summer months correlate with the enhanced electric field during these periods.
7

Emergency Communication

Aburawi, Abdulrahman, Salic, Sarija January 2015 (has links)
Even in the 21st century, modern communication technology is still affected by natural disasters and political turmoil which threaten people’s lives and make the internet or mobile phone networks unavailable for use. This work uses systems theory which resulted in a proof of concept system that uses shortwave radio technology to provide a one-way communication system. A message a user writes on their smartphone, which is connected to a small pre-set transmitter, is sent out to a receiver in another part of the world where the message can then be posted on the internet. This system is a cheaper alternative to other shortwave radio transmitters, and has potential for improvement.

Page generated in 0.064 seconds