• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insights on the Fates of Diarylamine Radical-Trapping Antioxidants During Inhibited Autoxidations Using Isotopically-Enriched Compounds

Penner, Neill 21 January 2021 (has links)
The oxidative degradation of organic materials typically operates through a radical-mediated chain mechanism known as autoxidation; a process that has severe consequences in both biological settings (i.e. accumulation of lipid peroxides) and non-living substrates (i.e. breakdown of petroleum-derived materials, such as lubricants/oils, plastics, polymers, rubbers, etc.). However, autoxidation can be retarded by radical-trapping antioxidants (RTAs); chemical species that capture chain-carrying radicals to break the chain of oxidation. A particular class of RTA, diarylamines, have proven especially effective at elevated temperatures due to a purported catalytic mechanism of inhibiting autoxidation, and thus, have found significant use as protective agents in engine lubricant oils. However, the current diarylamine technology struggles to manage the increased oxidative stress placed on it by modern internal combustion engines (ICEs), which burn fuel at higher temperatures in order to meet emission standards. Designing superior diarylamines is not straightforward, however, as the mechanisms by which they are forced from their catalytic cycle are not well understood. Herein, we report our investigations into the fate of an industrially-representative, isotopically-enriched diarylamine during hydrocarbon autoxidation at elevated temperatures using a novel 2D 1H – 15N heteronuclear multiple bond correlation (HMBC) spectroscopic technique. Synthesis of a small scope of oxidation products allowed for the identification of a previously unreported product of diarylamine autoxidation. Additionally, a consistent pattern of diarylamine speciation under varying conditions was observed spectroscopically. Use of the HMBC technique also confirmed previous reports of the regenerative ability of the diarylamine and the intermediates of its purported catalytic cycle. Quantification studies using ultra performance liquid chromatography (UPLC) during the early stages of autoxidation provided insight into the formation of initial diarylaminic intermediates. Additionally, we examined the fate of the diarylamine during autoxidations in the presence of nitrogen oxides (NOx), which are found in the blow-by gas of ICEs and have been shown to exacerbate hydrocarbon autoxidation. The performance of diarylamine was drastically reduced under such conditions, and HMBC spectroscopy illustrated its rapid conversion to a number of intermediates. The most prominent two intermediates were identified as mono- and di-nitrated analogues of the original diarylamine, and were demonstrated to possess no RTA activity; regardless of temperature or substrate. HMBC spectroscopy also illustrated the differences in product distribution under each set of conditions.
2

Using High-Field NMR to Identify the Bioactive Compounds in Extracts of Black Raspberry

Fu, Ruiling 13 September 2007 (has links)
No description available.
3

L'acide N-aminoazétidine-2-carboxylique : une nouvelle brique constitutive de foldamères / N-aminoazetidine-2-carboxylic acid : a new building block for foldamers

Altmayer-Henzien, Amandine 29 October 2013 (has links)
Les travaux rapportés dans ce manuscrit ont porté sur la synthèse et l’étude structurale d’oligopeptides contenant l’acide N-aminoazétidine-2-carboxylique AAzC, dans le but de caractériser un nouveau foldamère.Nous avons dans un premier temps préparé les quatre stéréoisomères de l’acide 2 aminocyclobutane carboxylique ACBC et les deux stéréoisomères de l’AAzC. Ces synthèses ont été réalisées en employant deux méthodes similaires, rapportées par notre laboratoire, comportant une étape-clé de photocycloaddition [2 + 2] entre l’éthylène et l’uracile ou l’aza-uracile. L’étude de l’AAzC dans des couplages peptidiques a ensuite révélé une réactivité difficile à maîtriser à cause d’une forte propension à l’ouverture du cycle azétidine, ce qui nous a conduit à ne pouvoir synthétiser que des oligopeptides contenant un unique résidu AAzC, qui plus est en position N terminale. Trois cyclobutylamides du cis-ACBC, du trans-ACBC et de l’AAzC ainsi qu’un cyclobutylester de l’AAzC ont alors été préparés avec de bons rendements. Le couplage du (S) AAzC avec chacun des stéréoisomères de l’ACBC a fourni quatre dipeptides mixtes Boc−AAzC−ACBC−OMe avec de bons rendements également. Enfin, nous avons synthétisé des tétrapeptides, hexapeptides et octapeptides homochiraux du cis-ACBC ou du trans ACBC comportant un unique résidu (S)-AAzC en position N-terminale. Les composés de la série cis ont présenté une forte tendance à la gélification, entraînant une chute du rendement et augmentant la difficulté pour la caractérisation et l’analyse structurale.Enfin, nous avons analysé la structuration de ces différents composés par spectroscopie IR en solution, RMN, dichroïsme circulaire, modélisation moléculaire et diffraction des rayons X. Deux techniques de RMN plus poussées, l’IMPACT HMBC 1H-15N et la SOFAST HMBC 1H-13C ont été utilisées afin de détecter des liaisons H intramoléculaires. Nous avons ainsi pu mettre en évidence la formation d’un hydrazino turn en solution et à l’état solide pour le cyclobutylamide du (S)-AAzC. Cette structuration en hydrazino turn a également été observée pour les quatre dipeptides Boc−AAzC−ACBC−OMe, cependant en présence d'un second conformère pour les dérivés du cis ACBC. Les différentes analyses nous ont permis de conclure que le tétrapeptide Boc−AAzC−[t ACBC]3−OMe et l’hexapeptide Boc−AAzC−[t ACBC]5−OMe adoptent une structuration en hélice 8 dans le chloroforme, avec la formation d’un hydrazino turn dans la partie N-terminale. L’octapeptide Boc−AAzC−[t ACBC]7−OMe adopte quant à lui une structure chimère dans la pyridine, comportant un hydrazino turn dans la partie N-terminale puis se poursuivant en hélice 12 dans la partie C-terminale comme l’hexamère et l’octamère du trans ACBC.Nous avons ainsi montré que l’AAzC possède une préférence forte pour une structuration locale en cycle à 8 chaînons, mais également une forte tendance à induire une hélice 8, jusqu'à une certaine distance dans un oligopeptide. / This thesis is devoted to the synthesis and structural study of oligopeptides containing N aminoazetidine-2-carboxylic acid (AAzC), to find a new foldamer.First, we prepared each of the four stereoisomers of 2-aminocyclobutane carboxylic acid (ACBC), and the two stereoisomers of AAzC. This has been done using two similar techniques from our lab, based on a [2 + 2] photocycloaddition key-step between ethylene and uracile or aza-uracile. Peptide coupling using AAzC revealed a tricky reactivity of this new building block, due to an easy ring-opening. We were thus able to synthesize only oligopeptides containing a single AAzC residue, blocked in the N-terminal position. Three model cyclobutylamide derivatives containing ACBC or AAzC and one model AAzC cyclobutylester were prepared. Synthesis of four dipeptides each incorporating AAzC in the N terminal position and a single stereoisomer of ACBC in the C terminal position was performed within good yields. Finally, oligopeptides comprising a sequence of trans or cis-ACBC residues bearing a single AAzC unit at the N terminal position were obtained. Cis-oligopeptides were difficult to analyze due to gelation phenomenon.The folding behaviour of these peptides was examined on the basis of IR spectroscopy, NMR studies, circular dichroism, molecular modelling studies and X-ray diffraction. Two new NMR techniques, IMPACT HMBC 1H-15N and SOFAST HMBC 1H-13C were used to detect intramolecular hydrogen bonds. We proved the existence of a hydrazino turn for the AAzC cyclobutylamide and the four Boc−AAzC−ACBC−OMe dipeptides. For longer oligopeptides, analyzes revealed an 8-helix structuration in chloroform for both the tetrapeptide Boc−AAzC−[t ACBC]3−OMe and hexapeptide Boc−AAzC−[t ACBC]5−OMe, helped by a hydrazino turn in the N-terminal position. Finally, octapeptide Boc−AAzC−[t ACBC]7−OMe shows in pyridine a chimeric structure, starting with a hydrazino turn in the N-terminal position but going on with a 12-helix in the C-terminal position as in trans-ACBC hexamer or octamer.We demonstrated here that AAzC has a strong preference for an 8-membered ring local structuration, and a strong tendency to induce an 8-helix in a peptide.
4

Karakterisering van Grubbs-tipe prekatalisatore met behulp van kernmagnetiese resonansspektroskopie / Christo de Lange

De Lange, Christo January 2014 (has links)
Since the development of the ruthenium containing precatalysts Grubbs 1 (1) and Grubbs 2 (2), there was an increase in the development of new precatalysts. The NMR characterization could not cope with this. The NMR characterization mainly consists of 1H, 31P, COSY and rarely 13C. Due to the high natural abundance of 1H and 31P (99.98% and 100%), these experiments could be carried out quickly and easily. The only change that had to be made was to the spectral width, to accommodate the carbene signal (Ru=CH) between δ 20.02 and δ 17.32 ppm. The lack of 13C characterization is attributed to the low natural abundance of these nuclei that is only 1.10% and the lack of published parameters. Furthermore, the broad spectral width of 300 ppm increases the difficulty because the number of scans has to be increased to increase the sensitivity of the spectra and obtain useful data. In this study the precatalyst 1 was used to learn the NMR technique as well as to acquire the NMR parameters. 2 and two other commercial Grubbs-type precatalysts 3 and 4 underwent NMR characterization so that acquired values could be compared with the literature. Six other non-commercial Grubbs-type precatalysts 5-10 were synthesized and characterized. Due to the instability of the precatalysts and taking into account the duration of these experiments, the characterization was done over three steps. The first step was to do the following experiments: 1H, COSY, HSQC and HMBC, which took four hours. The next step was the DEPT135 experiment of three hours, and finally the 13C experiment of seven hours. The maximum amount of information could be obtained in this way. The combined NMR parameters for this study was obtained and used to characterize the Grubbs-type precatalysts 5-10 partially. Due to the large amount of overlapping peaks in the aromatic and alkane areas the resolution was not sufficient for full characterization. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
5

Karakterisering van Grubbs-tipe prekatalisatore met behulp van kernmagnetiese resonansspektroskopie / Christo de Lange

De Lange, Christo January 2014 (has links)
Since the development of the ruthenium containing precatalysts Grubbs 1 (1) and Grubbs 2 (2), there was an increase in the development of new precatalysts. The NMR characterization could not cope with this. The NMR characterization mainly consists of 1H, 31P, COSY and rarely 13C. Due to the high natural abundance of 1H and 31P (99.98% and 100%), these experiments could be carried out quickly and easily. The only change that had to be made was to the spectral width, to accommodate the carbene signal (Ru=CH) between δ 20.02 and δ 17.32 ppm. The lack of 13C characterization is attributed to the low natural abundance of these nuclei that is only 1.10% and the lack of published parameters. Furthermore, the broad spectral width of 300 ppm increases the difficulty because the number of scans has to be increased to increase the sensitivity of the spectra and obtain useful data. In this study the precatalyst 1 was used to learn the NMR technique as well as to acquire the NMR parameters. 2 and two other commercial Grubbs-type precatalysts 3 and 4 underwent NMR characterization so that acquired values could be compared with the literature. Six other non-commercial Grubbs-type precatalysts 5-10 were synthesized and characterized. Due to the instability of the precatalysts and taking into account the duration of these experiments, the characterization was done over three steps. The first step was to do the following experiments: 1H, COSY, HSQC and HMBC, which took four hours. The next step was the DEPT135 experiment of three hours, and finally the 13C experiment of seven hours. The maximum amount of information could be obtained in this way. The combined NMR parameters for this study was obtained and used to characterize the Grubbs-type precatalysts 5-10 partially. Due to the large amount of overlapping peaks in the aromatic and alkane areas the resolution was not sufficient for full characterization. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
6

Structure Elucidation of Bioactive Compounds Isolated from Endophytes of Alstonia scholaris and Acmena graveolens

Hundley, Nicholas James 02 September 2005 (has links) (PDF)
Alstonia scholaris is an evergreen tree native to Southeast Asia and Australia. It is commonly used as a medicinal plant throughout these regions. In the present study, an endophyte of the genus Xylaria was isolated from a stem of Alstonia scholaris, its mycelia and exudate extracted, and the extract assayed for growth inhibition of HeLa cancer cells in vitro. Several known compounds were isolated and identified based on NMR, infrared, and mass spectral data. The compounds identified are 19,20-epoxycytochalasin C; 19,20epoxycytochalasin D; and xylobovide. Two other compounds, fusaric acid and dehydrofusaric acid, were discovered in an endophyte of the Hypocreales family inhabiting the plant Acmena Graveolens.

Page generated in 0.0242 seconds