• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 419
  • 305
  • 125
  • 46
  • 41
  • 13
  • 12
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1158
  • 295
  • 163
  • 128
  • 110
  • 109
  • 106
  • 103
  • 101
  • 84
  • 81
  • 77
  • 71
  • 71
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Molecular cytogenetic evaluation of uveal melanoma cell lines and archival tissue

White, Jason Scott. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xv, 146 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 117-129).
132

Automatic segmentation and classification of multiplex-fluorescence in-situ hybridization chromosome images

Choi, Hyo Hun, 1973- 10 August 2011 (has links)
Not available / text
133

Foldback DNA: nucleotide sequence and characterization of MboII repeated sequences in human long foldbackDNA by molecular cloning and hybridization

Lee, Hong-seng, Daniel, 李康善 January 1987 (has links)
published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
134

Meiotic irregularities of interspecific hybrids in the genus Cucurbita

Ahumada, Michael Francis, 1946- January 1973 (has links)
No description available.
135

POPULATION GENETICS AND GENOMICS OF COCCIDIOIDES IMMITIS AND COCCIDIOIDES POSADASII

Barker, Bridget M. January 2009 (has links)
The goal of my dissertation research is to elucidate the population structure of two understudied but increasingly important fungal pathogens of humans. Coccidioides immitis and C. posadasii cause the disease coccidioidomycosis (Valley fever). These fungi occur in the soil of the desert regions of North and South America. Although studied for over 100 years, the primary host, ecological niche, and sexual cycle of Coccidioides spp. still remain unknown. Understanding the population structure of these fungi will permit identification of fundamental aspects of their ecology and allow researchers to identify potential hosts. Assessing genotypic diversity of pathogens is one step to understanding the population structure and evolutionary potential of organisms, and is the focus of this dissertation. The first appendix focuses on developing and evaluating methods to obtain environmental samples, and comparison of genotypes found in soil vs. human patients. Direct inoculation of mice proved to be the most reliable method of obtaining environmental strains. Environmental isolates from Tucson group with Arizona patient isolates. Comparing genotypes of human, environmental and non-human host strains of Coccidioides may help to determine if gene flow occurs over long distances and provide some indication of the population structure of C. posadasii in the environment, and is the focus of the second appendix. Finally, whole-genome sequencing and resequencing has been completed for 20 strains of C. immitis and C. posadasii. The resulting data provide greater insight into variation between and within species. In particular, the final appendix provides evidence for hybridization and gene flow between species. Data show that a region of C. posadasii origin is found at a higher frequency among the C. immitis southern California and Mexico patient isolates, and is found rarely among patient isolates from the San Joaquin Valley. Of particular interest is the fact that there is a conserved border region for all instances of introgression, and the gene immediately adjacent to this border is a metalloproteinase gene. Together these studies provide insight into the population biology of two human pathogenic fungi: gene flow is limited between species and populations, but genetic exchange occurs at all levels.
136

Temporal genetic structure of feral honey bees (Hymenoptera: Apidae) in a coastal prairie habitat of southern Texas: impact of Africanization

Pinto, Maria Alice 30 September 2004 (has links)
The goal of this study was to examine the impact of Africanization on the genetic structure of the Welder Wildlife Refuge feral honey bee population by scoring mtDNA and microsatellite polymorphisms. Adult honey bee workers, collected between 1991 and 2001, were screened for mtDNA using the cytochrome b/BglII, ls rRNA/EcoRI, and COI/HinfI PCR-based assays. The procedure allowed identification of four mitotypes: eastern European, western European, A. m. lamarckii, and A. m. scutellata. The relative frequencies of the four mitotypes changed radically during the 11-year period. Prior to immigration of Africanized honey bees, the resident population was essentially of eastern European maternal ancestry. The first colony of A. m. scutellata mitotype was detected in 1993. Between 1995 and 1996 there was a mitotype turnover in the population from predominantly eastern European to predominantly A. m. scutellata. From 1997 onward, most colonies (69 %) were of A. m. scutellata mitotype. The temporal change in mtDNA was paralleled by nuclear DNA. The 12 microsatellite loci analyzed indicated (1) the mechanism of Africanization of the Welder population involved both maternal and paternal bi-directional gene flow (hybridization) between European and Africanized honey bees; and (2) the resident panmitic European population was replaced by panmitic asymmetrical admixtures of A. m. scutellata and European genes. The steepest increase in the proportion of introgressed A. m. scutellata nuclear alleles occurred between 1994 and 1997. The post-Africanization gene pool was composed of a diverse array of recombinant classes with a substantial European genetic contribution (mean proportion of European-derived alleles was 37 % as given by mR estimator or 25 % as given by mY estimator, for 1998-2001). If European genes continue to be retained at moderate frequencies, then the Africanized population is best viewed as a "hybrid swarm" instead of "pure African". The most radical change in the genetic structure of the Welder Wildlife Refuge feral honey bee population (observed between 1995 and 1997) coincided with arrival of the parasitic Varroa mite. We suggest that Varroa likely hastened the demise of European honey bees and had a major role in restructuring the Welder Wildlife Refuge feral honey bee population.
137

Integration of an Escherichia coli tryptophan operator into a Salmonella typhimurium tryptophan operon.

Stetter, Dennis William. January 1972 (has links)
No description available.
138

Cloning of genes encoding desirable characteristics of dendrobium gatton 'sunray'

Kim, Bong-Suk January 1995 (has links)
Currently the breeding of desirable traits in orchid flowers is a lengthy and unpredictable process. A shortened breeding time and a more direct method of introducing specific genetic characteristics could be achieved if more information were available on the specific genes responsible for flower characteristics. In order to identify some of these genes, the genetic relationships between a hybrid, Dendrobium Gatton 'Sunray', and the parent species bred to produce it, D. chrysotoxum Lindley and D. pu/che//um Lindley were examined.Ball State UniversityMuncie, IN 47306These results were supported by Restriction Fragment Length Polymorphisms (RFLPs) observed following amplification of the Internal Transcribed Spacer (ITS) regions of the rDNAs.In order to clone genes responsible for specific flower characteristics, mRNA differential display was performed using total RNA isolated from the leaves, immature flowers, and mature flowers of the hybrid orchid and its two parents. Bands unique to D. Gatton 'Sunray' flower tissue, which were common to the hybrid and a single parent, were excised from a denaturing acrylamide gel. Four of the bands, which represented expressed genes determining inherited flower characteristics, were re-amplified, cloned, and three were sequenced. Partial sequence information obtained for two of the clones was used to search the GenBank database for homologous genes. One of the clones had sequence homology to plant 26S ribosomal genes and the other clone was homologous to sequences encoding regulatory proteins active during development (for example, the human retinoblastoma susceptibility gene or the Caenorhabditis e/egans cosmid R06F6 containing a serine/threonine protein kinase gene). / Department of Biology
139

Fluorescence Resonance Energy Transfer between a Monolayer of Quantum Dots as Donors adjacent to a Monolayer of Biorecognition Elements as Acceptors

Petryayeva, Eleonora 23 July 2012 (has links)
The unique optical properties of quantum dots (QDs) have been widely used to develop bioassays based on Fluorescence Resonance Energy Transfer (FRET). The solid-phase assays using QDs as FRET donors have numerous practical advantages, including at least 10-fold enhancement in FRET efficiency, which is not immediately explained by theoretical predictions that model energy transfer processes of QDs in two-dimensional layers. Donor-acceptor separation distance, acceptor and donor concentrations were found to influence FRET efficiency in solid-phase assays. A novel immobilization strategy was implemented which made use of the high affinity of imidazole moieties to QD shells to build solid-phase QD bioassays. A 96-well polystyrene plate is presented as a platform suitable for rapid and convenient multiplexed detection. A typical microtiter plate reader was shown to be capable of discriminating different FRET pairs to picomol detection levels of target oligonucleotides. Furthermore, the QD-FRET bioassays provided for mismatch discrimination, and multiple cycles of regeneration were also demonstrated.
140

Fluorescence Resonance Energy Transfer between a Monolayer of Quantum Dots as Donors adjacent to a Monolayer of Biorecognition Elements as Acceptors

Petryayeva, Eleonora 23 July 2012 (has links)
The unique optical properties of quantum dots (QDs) have been widely used to develop bioassays based on Fluorescence Resonance Energy Transfer (FRET). The solid-phase assays using QDs as FRET donors have numerous practical advantages, including at least 10-fold enhancement in FRET efficiency, which is not immediately explained by theoretical predictions that model energy transfer processes of QDs in two-dimensional layers. Donor-acceptor separation distance, acceptor and donor concentrations were found to influence FRET efficiency in solid-phase assays. A novel immobilization strategy was implemented which made use of the high affinity of imidazole moieties to QD shells to build solid-phase QD bioassays. A 96-well polystyrene plate is presented as a platform suitable for rapid and convenient multiplexed detection. A typical microtiter plate reader was shown to be capable of discriminating different FRET pairs to picomol detection levels of target oligonucleotides. Furthermore, the QD-FRET bioassays provided for mismatch discrimination, and multiple cycles of regeneration were also demonstrated.

Page generated in 0.0261 seconds