• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 107
  • 14
  • 11
  • 9
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 335
  • 335
  • 132
  • 131
  • 122
  • 108
  • 82
  • 42
  • 38
  • 35
  • 31
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Applicability of Soil Moisture Sensors in Determination of Infiltration Rate

K C, Milan January 2017 (has links)
No description available.
132

Runoff Generation on Barro Colorado Island (BCI), Panamá

Godsey, Sarah 04 September 2003 (has links)
No description available.
133

Models of Disordered Media and Predictions of Associated Hydraulic Conductivity

Blank, L. Aaron, Jr. 08 December 2006 (has links)
No description available.
134

Strength and hydraulic conductivity characteristics of roller compacted concrete

Zafar, Saleem January 1997 (has links)
No description available.
135

Growth response and adaptability of acer rubrum and acer XFREEMANII cultivars to soil compaction

Fair, Barbara A. 13 July 2005 (has links)
No description available.
136

Soil-Bentonite Cutoff Walls: Hydraulic Conductivity and Contaminant Transport

Britton, Jeremy Paul 15 August 2001 (has links)
Soil-bentonite cutoff walls are commonly used to contain contaminants in the subsurface. A key property in determining the effectiveness of a cutoff wall is its hydraulic conductivity. There are important difficulties and uncertainties regarding the accuracy of commonly used methods of measuring the hydraulic conductivity of cutoff walls. When predicting contaminant transport through cutoff walls, common practice is to use the average hydraulic conductivity of the wall. There are some cases, however, such as circumferential cutoff walls with inward hydraulic gradients, where it is also important to consider the variability in hydraulic conductivity from point to point in the wall in contaminant transport studies. A pilot-scale facility was envisioned where subsurface barrier issues such as those mentioned above could be studied. In 1998, the Subsurface Barrier Test Facility (SBTF) was constructed. In this facility, pilot-scale subsurface barriers can be installed using real construction equipment and tested in a controlled environment. The effectiveness of various methods of measuring the hydraulic conductivity of cutoff walls was studied by building and testing three pilot-scale soil-bentonite cutoff walls at the SBTF. The following currently used test methods were evaluated: API tests on grab samples, lab tests on undisturbed samples, piezometer tests (slug tests), and piezocone soundings. The use of slug tests in cutoff walls was improved in this research in the areas of avoiding hydraulic fracture and accounting for the close proximity of the trench walls. The SBTF allows for measurement of the global, average hydraulic conductivity of an installed pilot-scale cutoff wall, which is a useful value to compare to the results of the above-mentioned tests. The two main factors differentiating the results of the different test methods used for the pilot-scale walls were remolding and sample size. Remolding of the API samples significantly reduced the hydraulic conductivity of these samples compared to the hydraulic conductivity measured in lab tests on undisturbed samples, which were of similar size. For the other tests, the degree and extent of remolding were less significant compared to in the API tests. For these tests, the scale of the measurement is believed to be the main factor differentiating the results. Hydraulic conductivity was found to increase as the sample volume increased, with the global measurement of the average hydraulic conductivity producing the highest value. The influence of variability in hydraulic conductivity on contaminant transport through cutoff walls was studied from a theoretical standpoint using the one-dimensional advection-diffusion equation. Charts were developed that can be used to estimate the flux through a cutoff wall based on knowledge of the average hydraulic conductivity of the wall and an estimate of the variability in hydraulic conductivity. Data sets of hydraulic conductivity from lab tests on soil-bentonite samples from four cutoff wall case histories were used to estimate typical values of variability. The contaminant transport analyses showed that the effect of variability may be significant when the hydraulic gradient opposes the concentration gradient, which is the case for a circumferential cutoff wall with an inward hydraulic gradient. The goal of a circumferential cutoff wall with an inward hydraulic gradient is to reduce the outward diffusive flux of contaminant by inducing an inward advective flux. The effect of variability in hydraulic conductivity is to reduce the effectiveness of this scheme. / Ph. D.
137

The combined effects of fertilization and relative water limitation on tissue water relations, hydraulic parameters and shallow root distribution in loblolly pine (Pinus taeda L.)

Russell, Edward Morgan 27 August 2019 (has links)
One goal of this research was to characterize shoot tissue-level responses in loblolly pine to soil moisture limitation in combination with fertilization as well as to more severe soil moisture limitation. We found that neither fertilization alone, nor fertilization in combination with soil moisture limitation resulted in changes to shoot tissue water relations parameters classically characterized in drought response studies. More severe water limitation was necessary to elicit responses, and those responses had not been fully described previously. The more severe water limitation resulted in increased capacitance beyond turgor loss, increased relative water content at turgor loss, a more negative turgor loss point, an increased bulk modulus of elasticity, more negative osmotic potential at 100% relative water content, and an increased apoplastic water fraction. As there were indications of reduced water use and moisture stress in the absence of shoot level responses under less severe drought, such parameters are insufficient alone to characterize moisture stress in fertilized and in less severely water limited loblolly trees. Additionally, we sought a morphological or physiological explanation for the reduced transpiration and increased water use efficiency reported for fertilized trees in the Virginia Piedmont. Our characterizations of the responses of root distribution and hydraulics to limited soil moisture here complement existing research, which demonstrated changes to root distribution and hydraulics in response to fertilization. The responses we discovered in fertilized trees that accompanied reduced transpiration and increased water use efficiency that differed from responses to reduced soil moisture alone were primarily large decreases to shallow root presence. We found this to be readily quantified using measures of root length density. Decreases to whole-tree hydraulic conductivity were also shown to occur with fertilization and were shown not to occur in shoot tissue, suggesting limitation via rhizosphere or root xylem conductance. Our results support the supposition that fertilization narrows hydraulic safety margins and potentially predisposes loblolly trees to moisture stress, particularly prolonged, severe water limitation following fertilization. Finally, we tested the validity of throughfall exclusion for simulating reduced rainfall using a greenhouse 'split-pot' study, which applied spatially fixed heterogeneous soil moisture to young, well-watered loblolly pines. The 'split-pot' experiments demonstrated that spatially fixed soil moisture heterogeneity does not confound drought effects; needle area specific transpiration was not decreased, nor was water use efficiency increased. This supports the validity of inferences taken from drought simulation experiments with loblolly pine where throughfall exclusion troughs reduce soil moisture content in a consistent, spatially heterogeneous manner. / Doctor of Philosophy / We investigated various effects of soil moisture limitation alone, and in combination with common fertilization practices in loblolly pine production. Responses at the shoot and needle level to different levels of soil moisture limitation produced new findings concerning how tissues respond to more severe water limitation. A 30% decrease in throughfall precipitation alone, or in combination with fertilization did not elicit drought related shoot tissue responses despite the presence of other indications of moisture stress and reduced water use. We also sought to explain why fertilized trees experiencing water limitation had environmental sensitivities that were different from unfertilized tree receiving ambient rainfall amounts or from trees only experiencing water limitation without fertilization. We found that changes to shallow root presence, especially root length density, accompanied the different patterns of environmental sensitivity and water use. Also, the water conducting ability of roots changed unevenly in soil with uneven moisture levels. The ability of roots to resist loss of conductivity to water did not change unevenly in the same way. We did another set of experiments to determine if using impervious troughs to catch rain is a valid approach to reducing soil moisture for the purpose of testing how loblolly responds to water limitation. These throughfall exclusion troughs create uneven soil moisture reduction, which can have effects on plant water use that are separate from water limitation alone. We found that in well-watered young trees, uneven soil moisture alone did not produce responses that could be confused with the effects of water limitation. This finding indirectly validates the use of throughfall exclusion troughs to simulate reduced rainfall.
138

Spatial Relationships Between Potential Bioavailable Organic Carbon and Sediment Grain Size at a Chlorinated Solvent-Contaminated Site

Boncal, Janelle Elizabeth 27 April 2011 (has links)
Chlorinated ethenes are considered one of the most prevalent sources of groundwater contamination in developed countries. Natural attenuation of chlorinated ethenes is possible through the process of microbial reductive dechlorination. Reductive dechlorination can occur in contaminated aquifers where there are sufficient amounts of organic carbon and reducing redox conditions to support dechlorinating microorganisms. Natural organic carbon (NOC) from dissolved aquifer sediment is thought to be the source of fermentable compounds needed to produce molecular hydrogen that functions as the primary electron donor for reductive dechlorination. Therefore, in an anaerobic aquifer, the production of molecular hydrogen from the fermentation of NOC drives the reductive dechlorination process. The variability and distribution of potential bioavailable organic carbon (PBOC) at a site is relatively unknown and any potential relationships between PBOC and the physical properties of the aquifer sediment have not been evaluated. Exploring relationships between the grain size of aquifer sediment PBOC may help to determine the feasibility of natural attenuation as a long-term remediation strategy at chlorinated ethene-contaminated sites. Because hydraulic conductivity is directly related to aquifer sediment grain size, zones of high hydraulic conductivity may promote greater microbial activity or biodegradation because of the increased availability of PBOC and nutrient flux. To determine potential relationships between PBOC and aquifer sediment grain size, two experiments were performed. PBOC was measured for 106 sediment samples impacted by chlorinated solvent contamination from an anaerobic type II site through a multiple liquid extraction process (Rectanus et al. 2007). Grain size distributions for each of the 106 sediment samples were determined by conducting sieve analyses. The results of both experiments were compared to explore relationships between PBOC and sediment grain size and to evaluate spatial distribution of both in the surficial aquifer. / Master of Science
139

An Experimental Study on Soil Water Characteristics and Hydraulic Conductivity of Compacted Soils

Cuceoglu, Faik 23 September 2016 (has links)
The importance of applying unsaturated soil mechanics concepts to geotechnical engineering design has been widely recognized. Soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) are vital soil properties that govern engineering behavior of unsaturated soils. In this study, a transient water release and imbibitions method (TRIM) is used to measure the SWCC and HCF under drying and wetting states, which accommodates integrated experimental and modeling techniques. The results of saturated hydraulic conductivity tests through flexible wall method are then used as input parameters for simulating experimental data. In general, the model provides a satisfactory fit to experimental data. Soil water characteristic curves (SWCCs) and hydraulic conductivity functions (HCFs) are presented for a variety of soils that were prepared at different molding water contents and compactive efforts. The influences of dry density, molding water content, and hysteresis have been investigated. Dry density affects soil-water characteristic in terms of its air-entry value (AEV), rate of drying, and size of the hysteresis loop. The test results indicate that the SWCC and HCF obtained in terms of volumetric water content is more sensitive to the changes in dry density than molding water content. Based on cohesive soil results, some statistical relations are proposed to estimate wetting-path SWCC and HCF parameters from more easily measured drying curves. Changes in the van Genuchten's fitting parameters and residual volumetric water content are investigated for both drying and wetting conditions, with changes in the kaolin clay content. / Master of Science
140

Climate and geographical influence on the performance of infiltration-based facilities for managing runoff – Temporal and spatial variability

Mantilla, Ivan January 2024 (has links)
Climate change is expected to lead to more intense and severe rainfall events in the future, significantly increasing the risk of urban flooding. This change, characterized by spatial and temporal shifts in precipitation patterns, presents a challenge to the capacity of existing urban drainage systems, which may lead to higher runoff volumes than they were initially designed to handle. Relying solely on enlarging stormwater infrastructure to tackle this issue could be expensive and may transfer the flooding risk downstream, rather than effectively resolving it. Furthermore, climate change may also lead to prolonged dry spells, potentially resulting in soil compaction and diminished soil infiltration rates. Given these considerations, it is essential to ensure urban drainage systems are both adaptable and space-efficient, with an enhanced capacity to manage the heightened rainfall caused by climate change.   As awareness of the hydrological and environmental impacts of urbanization on catchments grows, there has been a paradigm shift toward adopting green infrastructure solutions. These approaches diverge from traditional 'end-of-pipe' strategies, emphasizing more holistic and sustainable methods. The overall aim of this thesis is to investigate the implications of climatic conditions and geographic location on the retention and detention capacity of three types of infiltration-based facilities: a biofilter cell, a green roof, and a grass swale. A rainfall-runoff model of a biofilter cell and a green roof, combined with swale irrigation experiments, was used to evaluate the capacity of these facilities to reduce runoff volumes and attenuate peak flows. The analysis was conducted in four urban areas representing oceanic (Cfc), humid continental (Dfb), and subarctic (Dfc) climatic zones. The assessment also includes the effect of temporal and spatial variation of saturated hydraulic conductivities (ksat). Swale irrigation experiments were conducted to evaluate the effect of outflow controls on swale retention and detention capacities, under high soil moisture conditions.   Results for biofilter cells and green roofs showed that retention capacities were influenced by the combined effect of antecedent wetness, the extent of winter periods, and the frequency and intensity of rainfall events. Conversely, green roofs were found to have a higher sensitivity to initial soil conditions and antecedent dry weather periods, which was observed through a spread distribution of runoff volume reductions. Grass swales exhibited a large spatial distribution of hydraulic conductivity (ksat) values, with lower values at the swale bottom and higher values at the slope on the right side. Results from a full-scale infiltration test showed that overall, grass swale infiltration capacities are representative of the measured ksat values at the swale bottom. Finally, the presence of outflow controls was observed to enhance the retention and detention capacities of grass swales, even under high levels of soil moisture content. This increase in swale hydrological functionality was influenced by swale outflow controls, leading to greater utilization of the grass swale surface area. Differences between swales with outflow controls and those without were noted due to the effect of the additional storage capacity provided by an outlet control weir. Conversely, it was shown that swales without outflow controls experienced limited retention under high soil moisture content, restricted by the finite capacity of surface depression storage.

Page generated in 0.0168 seconds