Spelling suggestions: "subject:"habitatnutzung"" "subject:"substratnutzung""
1 |
Verhalten und Raumnutzung von Exmoorponys im Reiherbachtal (Solling) / Behaviour and habitat use of Exmoor ponies in a pastoral forest (Solling)Rödde, Sandy Marie-Christine 26 May 2015 (has links)
Vom Herbst 2011 bis zum Herbst 2013 wurde das Verhalten und die Standortwahl einer Herde Exmoorponys unter seminatürlichen Bedingungen im Naturpark Solling-Vogler untersucht.
Die zehn Fokustiere lebten auf einer rund 140 ha großen Fläche.
Die Verhaltensweisen wurden für jedes Individuum mittels focal-animal-sampling notiert. Im Durchschnitt verbrachten die Exmoorponys im Solling 72,4% des gezeigten Gesamtverhaltens mit der Nahrungsaufnahme, 15,5% mit dem Ruhen, 6,5% mit der Lokomotion, 2,1% mit dem Komfortverhalten, 1,4% mit dem Stehen, 1,3% mit dem Sozialverhalten, 0,7% mit dem Defäkationsverhalten und 0,2% mit der Aufnahme von Flüssigkeiten.
Die Verhaltensweisen unterlagen dabei einem Tages- sowie Jahresrhythmus.
Der Grund für diese saisonalen Schwankungen waren die entsprechenden Vegetationsgegebenheiten sowie die klimatischen Bedingungen während der Jahreszeiten.
Bei Gegenüberstellung der individuellen Verhaltensweisen war auffallend, dass die Tiere besondere Vorlieben und Charakterzüge zu haben schienen. Nach Auswertung der Habitatnutzung mittels des electivity-Index, welcher die Nutzung in Zusammenhang mit der Größe des Gebietes stellt, fiel auf, dass die Ponys vor allem die offenen Areale präferierten. Die Fichten- und Eichenforste wurden nur entsprechend der Verfügbarkeit genutzt und sogar teilweise gemieden. Zudem fiel eine Kopplung bestimmter Verhaltensweisen an ausgesuchte Areale auf. So wurden die offenen Flächen eher zum Grasen und die Wälder eher zum Ruhen genutzt.
Bei abschließender Betrachtung des Sozialverhaltens fallen starke individuelle Unterschiede sowie eine Abhängigkeit des Sozialverhaltens von den Jahreszeiten auf. Im Frühling und im Winter wurde Sozialverhalten häufiger gezeigt als in den Herbstmonaten. Das vorgestellte Projekt kann ein guter Leitfaden für nachfolgende Projekte sein, welche eine Ganzjahresbeweidung in vorwiegend forstlich geprägten Bereichen anstreben. Erste Auswirkungen sind bereits abzusehen. So ist die Anwesenheit von Megaherbivoren beispielsweise förderlich für die großflächige Verjüngung von Eichen (Quercus robur und Q. petrea), da große Pflanzenfresser dazu tendieren, eher die jungen Pflanzen der Rotbuche (Fagus sylvatica) zu verbeißen. Dieser Verbiss fand vor allem im Winter sowie im Frühjahr statt, wenn den Ponys keine alternativen Nahrungsmittel zur Verfügung standen.
|
2 |
Die nächtliche Habitatnutzung von Feldhasen (Lepus europaeus) in drei unterschiedlichen Habitaten / The nocturnal habitat use of European Brown Hare (Lepus europaeus) in three different habitatsKinser, Andreas 08 June 2011 (has links) (PDF)
Die vorliegende Studie untersucht die nächtliche Habitatnutzung von Feldhasen in drei unterschiedlichen Habitaten. Das Untersuchungsgebiet Opferbaum ist stark ackerbaulich geprägt und das Untersuchungsgebiet Güntersleben sehr strukturreich durch das Vorkommen von Gehölzen und Waldrändern. Das Untersuchungsgebiet Fritzlar besitzt einen waldrandgeprägten sowie einen ackerbaulich intensiv genutzten Landschaftsteil.
Die nächtlichen Aufenthaltsorte von Feldhasen wurden mittels Wärmebildkamera zwischen September 2004 bis April 2005 und September 2005 bis April 2006 kartiert. In jedem der Untersuchungsgebiete wurden einmal monatlich sogenannte Festpunkte angefahren, die umliegenden Landschaftsbereiche abgesucht und beobachtete Feldhasen in Arbeitskarten eingezeichnet. Eine Kartierung der von den Festpunkten einsehbaren Landschaftsteile geschah vor jedem Erfassungstermin bei Tageslicht. Den kartierten Feldhasen (Präsenz-Punkte) wurde im GIS eine zufällige Punktverteilung im beobachteten Landschaftsraum gegenüber gestellt (Pseudo-Absenz-Punkte). Für jeden dieser Punkte wurden bis zu 20 Minimaldistanzen zu verschiedenen Strukturelementen der Landschaft berechnet. In Generalisierten Linearen Modellen (GLM) wurden die univariaten und multivariaten Zusammenhänge der erklärenden Variablen mit der binomialen Zielvariablen modelliert. Zeitliche Aspekte der Habitatnutzung im Verlauf des Winterhalbjahres wurden mit einer multitemporalen Modellierung für zusammengefasste Zwei-Monats-Zeiträume untersucht. Die Modellselektion geschah mit Hilfe des Akaike Information Criterion (AIC).
Insgesamt wurden 4.494 Standorte von Feldhasen in Opferbaum, 2.418 in Güntersleben und 1.391 in Fritzlar kartiert. Die univariate Analyse zeigt eine Meidung von Verkehrs- und Siedlungsstrukturen. Waldränder, Gehölze, Buntbrachen und Grünland werden in den Untersuchungsgebieten Fritzlar und Opferbaum bevorzugt, in Güntersleben werden die zwei letzteren gemieden. Die multivariaten Modelle zeigen eine Präferenz der Nahrungshabitate Wintergetreide und Raps, in Fritzlar und Opferbaum wird auch Grünland bevorzugt. Nach dem Nahrungshabitat wird von Feldhasen die Nähe zu potentiellen Deckungshabitaten präferiert, dabei werden nur Buntbrachen in allen Untersuchungsgebieten bevorzugt. Besonders Verkehrswege und Siedlungen werden gemiedenen, Ausnahme ist die Bevorzugung von Siedlungsbereichen in Güntersleben. Teilweise gegensätzliche Ergebnisse zeigt die Modellierung der Zwei-Monats-Zeiträume zwischen den Untersuchungsgebieten. Sie zeigen aber nur geringe Veränderungen der Habitatnutzung von Feldhasen im Verlauf des Winterhalbjahres. Allen selektierten Modellen gemein ist die geringe Erklärungsgüte von weniger als 5 % der Datenvarianz.
Die Eignung der entwickelten Aufnahmemethodik und die Ergebnisse werden anhand der umfangreichen Literatur diskutiert. Die Art des Habitats ist von großer Bedeutung für die Habitatnutzung der Feldhasen. Durch die landwirtschaftliche Fruchtfolge bedingte strukturelle Veränderungen verändern ebenso die kleinräumige Habitatnutzung wie die Veränderungen der landwirtschaftlichen Schläge im Verlauf des Herbstes und Winters. Das opportunistische Habitatverhalten von Feldhasen erschwert dabei die Beobachtung von speziellem Habitatverhalten. Die zum Teil gegensätzlichen Ergebnisse werden auch vor dem Hintergrund potentieller Fehlerquellen der Methodik und einem möglichen Einfluss vernachlässigter Variablen diskutiert. Dabei stellt sich die Frage nach grundsätzlichen Konsequenzen für zukünftige Untersuchungen. Die unterschiedliche Habitatnutzung des Feldhasen in unterschiedlichen Habitaten muss sowohl bei der Wahl der Methodik als auch bei der Wahl der Gebietskulisse berücksichtigt werden. / The study presented in this thesis examined the nocturnal habitat use by hares in three different habitats. The study area Opferbaum is strongly influenced by agriculture whereas the landscape of the study area Güntersleben has very diverse structures such as groves and forest edges. The study area Fritzlar has a forest dominated landscape on the one hand and a landscape of intensive agricultural activities on the other hand.
Hare locations were mapped using thermography between September 2004 to April 2005 and September 2005 to April 2006. In each of the study sites the surrounding landscape of selected viewpoints was observed once a month and hare distribution was plotted in topographical maps. Mapping of the visible landscape of the viewpoints took place during daytime. Up to 20 minimum distances to different structural elements of the landscape were calculated for each hare location (presence-points) and randomly distributed points (pseudo-absence points) in the observed landscape. Generalized linear models (GLM) were applied to model the univariate and multivariate relationships of explanatory variables with the binomial response variables (hare 1; pseudo-absence 0). Temporal aspects of habitat use during the winter were analyzed by multi-temporal modeling for combined two-month periods. The model selection was done using the Akaike Information Criterion (AIC).
A total of 4,494 locations by hares were mapped in Opferbaum, 2,418 in Güntersleben and 1,391 in Fritzlar. The univariate analysis shows an avoidance of traffic and urban areas. Forest edges and groves are preferred in all study areas. Pasture and wildlife-friendly set-asides are preferred in Fritzlar and Opferbaum, but avoided in Güntersleben. The multivariate models show a preference of feeding habitats such as winter cereals and oilseed rape, hares also prefer pasture in Fritzlar and Opferbaum. After the feeding habitat, hares show a preference to be in proximity to shelter providing habitats. Wildlife-friendly set-asides were preferred in all study sites. Traffic and urban areas are avoided in Opferbaum and Fritzlar but urban areas preferred in Güntersleben. Modeling the two-month periods shows different results between the study areas but only small changes in habitat use by brown hares during the winter months. All selected models explain less than 5 % of the variance of data.
The consideration of comparable studies shows that besides methodology and surveying time, the results of habitat use of brown hares are primarily influenced by the kind of the examined landscapes. The small-scale habitat use of brown hare is also influenced by structural changes in the agricultural crop rotation as well as a changing vegetation in autumn and winter. The opportunistic behaviour of brown hares make the observation of special habitat use difficult. The results are discussed in connection with error in methodology and unconsidered variables but also to fundamental consequences for future investigations. The differences in habitat use of brown hares in different habitats have to be considered in both, the choice of methodology and when choosing the study sites.
|
3 |
Die nächtliche Habitatnutzung von Feldhasen (Lepus europaeus) in drei unterschiedlichen Habitaten: The nocturnal habitat use of European Brown Hare (Lepus europaeus) in three different habitatsKinser, Andreas 24 March 2011 (has links)
Die vorliegende Studie untersucht die nächtliche Habitatnutzung von Feldhasen in drei unterschiedlichen Habitaten. Das Untersuchungsgebiet Opferbaum ist stark ackerbaulich geprägt und das Untersuchungsgebiet Güntersleben sehr strukturreich durch das Vorkommen von Gehölzen und Waldrändern. Das Untersuchungsgebiet Fritzlar besitzt einen waldrandgeprägten sowie einen ackerbaulich intensiv genutzten Landschaftsteil.
Die nächtlichen Aufenthaltsorte von Feldhasen wurden mittels Wärmebildkamera zwischen September 2004 bis April 2005 und September 2005 bis April 2006 kartiert. In jedem der Untersuchungsgebiete wurden einmal monatlich sogenannte Festpunkte angefahren, die umliegenden Landschaftsbereiche abgesucht und beobachtete Feldhasen in Arbeitskarten eingezeichnet. Eine Kartierung der von den Festpunkten einsehbaren Landschaftsteile geschah vor jedem Erfassungstermin bei Tageslicht. Den kartierten Feldhasen (Präsenz-Punkte) wurde im GIS eine zufällige Punktverteilung im beobachteten Landschaftsraum gegenüber gestellt (Pseudo-Absenz-Punkte). Für jeden dieser Punkte wurden bis zu 20 Minimaldistanzen zu verschiedenen Strukturelementen der Landschaft berechnet. In Generalisierten Linearen Modellen (GLM) wurden die univariaten und multivariaten Zusammenhänge der erklärenden Variablen mit der binomialen Zielvariablen modelliert. Zeitliche Aspekte der Habitatnutzung im Verlauf des Winterhalbjahres wurden mit einer multitemporalen Modellierung für zusammengefasste Zwei-Monats-Zeiträume untersucht. Die Modellselektion geschah mit Hilfe des Akaike Information Criterion (AIC).
Insgesamt wurden 4.494 Standorte von Feldhasen in Opferbaum, 2.418 in Güntersleben und 1.391 in Fritzlar kartiert. Die univariate Analyse zeigt eine Meidung von Verkehrs- und Siedlungsstrukturen. Waldränder, Gehölze, Buntbrachen und Grünland werden in den Untersuchungsgebieten Fritzlar und Opferbaum bevorzugt, in Güntersleben werden die zwei letzteren gemieden. Die multivariaten Modelle zeigen eine Präferenz der Nahrungshabitate Wintergetreide und Raps, in Fritzlar und Opferbaum wird auch Grünland bevorzugt. Nach dem Nahrungshabitat wird von Feldhasen die Nähe zu potentiellen Deckungshabitaten präferiert, dabei werden nur Buntbrachen in allen Untersuchungsgebieten bevorzugt. Besonders Verkehrswege und Siedlungen werden gemiedenen, Ausnahme ist die Bevorzugung von Siedlungsbereichen in Güntersleben. Teilweise gegensätzliche Ergebnisse zeigt die Modellierung der Zwei-Monats-Zeiträume zwischen den Untersuchungsgebieten. Sie zeigen aber nur geringe Veränderungen der Habitatnutzung von Feldhasen im Verlauf des Winterhalbjahres. Allen selektierten Modellen gemein ist die geringe Erklärungsgüte von weniger als 5 % der Datenvarianz.
Die Eignung der entwickelten Aufnahmemethodik und die Ergebnisse werden anhand der umfangreichen Literatur diskutiert. Die Art des Habitats ist von großer Bedeutung für die Habitatnutzung der Feldhasen. Durch die landwirtschaftliche Fruchtfolge bedingte strukturelle Veränderungen verändern ebenso die kleinräumige Habitatnutzung wie die Veränderungen der landwirtschaftlichen Schläge im Verlauf des Herbstes und Winters. Das opportunistische Habitatverhalten von Feldhasen erschwert dabei die Beobachtung von speziellem Habitatverhalten. Die zum Teil gegensätzlichen Ergebnisse werden auch vor dem Hintergrund potentieller Fehlerquellen der Methodik und einem möglichen Einfluss vernachlässigter Variablen diskutiert. Dabei stellt sich die Frage nach grundsätzlichen Konsequenzen für zukünftige Untersuchungen. Die unterschiedliche Habitatnutzung des Feldhasen in unterschiedlichen Habitaten muss sowohl bei der Wahl der Methodik als auch bei der Wahl der Gebietskulisse berücksichtigt werden.:Inhalt
1 Einleitung 1
1.1 Motivation 1
1.2 Methodenüberblick 2
1.3 Stand des Wissens 4
1.4 Ziele 13
2 Material und Methoden 14
2.1 Untersuchungsgebiete 14
2.1.1 Fritzlar 14
2.1.2 Güntersleben 18
2.1.3 Opferbaum 21
2.2 Feldökologische Methoden 24
2.2.1 Methodenentwicklung 24
2.2.2 Feldhasenerfassung 27
2.2.3 GIS-Anwendung 31
2.2.4 Flächennutzungs- & Habitatkartierung 32
2.3 Statistik 34
2.3.1 Bestimmung der Variablen 34
2.3.2 Modellbildung 39
2.3.2.1 Präsenz- und Pseudo-Absenz-Verteilung 39
2.3.2.2 Logistische Regression 40
2.3.2.3 Modellselektion 42
3 Ergebnisse 48
3.1 Anzahl und Dichte beobachteter Feldhasen 48
3.2 Struktur der untersuchten Landschaften 49
3.3 Generalisierte Lineare Modelle zur nächtlichen Habitatnutzung von Feldhasen 53
3.3.1 Univariate Analyse der potentiellen erklärenden Variablen 53
3.3.2 Multivariate Analyse der potentiellen erklärenden Variablen 55
3.3.2.1 Multivariate Modelle für das Untersuchungsgebiet Fritzlar 55
3.3.2.2 Multivariate Modelle für das Untersuchungsgebiet Güntersleben 57
3.3.2.3 Multivariate Modelle für das Untersuchungsgebiet Opferbaum 59
3.3.2.4 Multitemporale Modelle der Zwei-Monats-Zeiträume 62
3.3.2.5 Multivariate Modelle für alle Untersuchungsgebiete 68
4 Diskussion 72
4.1 Methodenkritik 72
4.1.1 Einfluss der maximalen Erfassungsdistanz 72
4.1.2 Eignung der entwickelten Methodik 73
4.2 Habitatnutzung von Feldhasen 75
4.2.1 Nutzung einzelner Strukturelemente 75
4.2.2 Habitatnutzung im Untersuchungsgebiet Fritzlar 85
4.2.3 Habitatnutzung im Untersuchungsgebiet Güntersleben 87
4.2.4 Habitatnutzung im Untersuchungsgebiet Opferbaum 93
4.2.5 Habitatnutzung im zeitlichen Verlauf 96
4.2.6 Multivariates Gesamtmodell 98
4.3 Betrachtung unberücksichtigter Variablen 99
4.4 Schlussbetrachtung und Ausblick 102
5 Zusammenfassung 105
6 Literatur 109
7 Anhang 121 / The study presented in this thesis examined the nocturnal habitat use by hares in three different habitats. The study area Opferbaum is strongly influenced by agriculture whereas the landscape of the study area Güntersleben has very diverse structures such as groves and forest edges. The study area Fritzlar has a forest dominated landscape on the one hand and a landscape of intensive agricultural activities on the other hand.
Hare locations were mapped using thermography between September 2004 to April 2005 and September 2005 to April 2006. In each of the study sites the surrounding landscape of selected viewpoints was observed once a month and hare distribution was plotted in topographical maps. Mapping of the visible landscape of the viewpoints took place during daytime. Up to 20 minimum distances to different structural elements of the landscape were calculated for each hare location (presence-points) and randomly distributed points (pseudo-absence points) in the observed landscape. Generalized linear models (GLM) were applied to model the univariate and multivariate relationships of explanatory variables with the binomial response variables (hare 1; pseudo-absence 0). Temporal aspects of habitat use during the winter were analyzed by multi-temporal modeling for combined two-month periods. The model selection was done using the Akaike Information Criterion (AIC).
A total of 4,494 locations by hares were mapped in Opferbaum, 2,418 in Güntersleben and 1,391 in Fritzlar. The univariate analysis shows an avoidance of traffic and urban areas. Forest edges and groves are preferred in all study areas. Pasture and wildlife-friendly set-asides are preferred in Fritzlar and Opferbaum, but avoided in Güntersleben. The multivariate models show a preference of feeding habitats such as winter cereals and oilseed rape, hares also prefer pasture in Fritzlar and Opferbaum. After the feeding habitat, hares show a preference to be in proximity to shelter providing habitats. Wildlife-friendly set-asides were preferred in all study sites. Traffic and urban areas are avoided in Opferbaum and Fritzlar but urban areas preferred in Güntersleben. Modeling the two-month periods shows different results between the study areas but only small changes in habitat use by brown hares during the winter months. All selected models explain less than 5 % of the variance of data.
The consideration of comparable studies shows that besides methodology and surveying time, the results of habitat use of brown hares are primarily influenced by the kind of the examined landscapes. The small-scale habitat use of brown hare is also influenced by structural changes in the agricultural crop rotation as well as a changing vegetation in autumn and winter. The opportunistic behaviour of brown hares make the observation of special habitat use difficult. The results are discussed in connection with error in methodology and unconsidered variables but also to fundamental consequences for future investigations. The differences in habitat use of brown hares in different habitats have to be considered in both, the choice of methodology and when choosing the study sites.:Inhalt
1 Einleitung 1
1.1 Motivation 1
1.2 Methodenüberblick 2
1.3 Stand des Wissens 4
1.4 Ziele 13
2 Material und Methoden 14
2.1 Untersuchungsgebiete 14
2.1.1 Fritzlar 14
2.1.2 Güntersleben 18
2.1.3 Opferbaum 21
2.2 Feldökologische Methoden 24
2.2.1 Methodenentwicklung 24
2.2.2 Feldhasenerfassung 27
2.2.3 GIS-Anwendung 31
2.2.4 Flächennutzungs- & Habitatkartierung 32
2.3 Statistik 34
2.3.1 Bestimmung der Variablen 34
2.3.2 Modellbildung 39
2.3.2.1 Präsenz- und Pseudo-Absenz-Verteilung 39
2.3.2.2 Logistische Regression 40
2.3.2.3 Modellselektion 42
3 Ergebnisse 48
3.1 Anzahl und Dichte beobachteter Feldhasen 48
3.2 Struktur der untersuchten Landschaften 49
3.3 Generalisierte Lineare Modelle zur nächtlichen Habitatnutzung von Feldhasen 53
3.3.1 Univariate Analyse der potentiellen erklärenden Variablen 53
3.3.2 Multivariate Analyse der potentiellen erklärenden Variablen 55
3.3.2.1 Multivariate Modelle für das Untersuchungsgebiet Fritzlar 55
3.3.2.2 Multivariate Modelle für das Untersuchungsgebiet Güntersleben 57
3.3.2.3 Multivariate Modelle für das Untersuchungsgebiet Opferbaum 59
3.3.2.4 Multitemporale Modelle der Zwei-Monats-Zeiträume 62
3.3.2.5 Multivariate Modelle für alle Untersuchungsgebiete 68
4 Diskussion 72
4.1 Methodenkritik 72
4.1.1 Einfluss der maximalen Erfassungsdistanz 72
4.1.2 Eignung der entwickelten Methodik 73
4.2 Habitatnutzung von Feldhasen 75
4.2.1 Nutzung einzelner Strukturelemente 75
4.2.2 Habitatnutzung im Untersuchungsgebiet Fritzlar 85
4.2.3 Habitatnutzung im Untersuchungsgebiet Güntersleben 87
4.2.4 Habitatnutzung im Untersuchungsgebiet Opferbaum 93
4.2.5 Habitatnutzung im zeitlichen Verlauf 96
4.2.6 Multivariates Gesamtmodell 98
4.3 Betrachtung unberücksichtigter Variablen 99
4.4 Schlussbetrachtung und Ausblick 102
5 Zusammenfassung 105
6 Literatur 109
7 Anhang 121
|
4 |
Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides), an invasive, alien canid in Central Europe / Raumnutzung, Ausbreitung und Sozialsystem des Marderhundes (Nyctereutes procyonoides), eines invasiven, allochthonen Kaniden in ZentraleuropaDrygala, Frank 14 December 2009 (has links) (PDF)
Abstract
Between October 1999 and October 2003, 30 adult and 48 young (< 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006.
No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair sharing the same area all year round.
Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations.
Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe.
Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements.
There were relocations of 59 (43.4%) ear-tagged young racoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radio-collared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.
|
5 |
Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides GRAY, 1834) an invasive, alien canid in Central EuropeDrygala, Frank 16 August 2010 (has links) (PDF)
Between October 1999 and October 2003, 30 adult and 48 young (< 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of North-East Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006.
No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair mates sharing the same area all year round.
Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations.
Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe.
Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements.
There were relocations of 59 (43.4%) ear-tagged young raccoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radiocollared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.
|
6 |
Untersuchungen zum Raumnutzungsverhalten und zur Nahrungsökologie ausgewählter Raubsäugerarten im brandenburgischen Vogelschutzgebiet „Mittlere Havelniederung“ mit besonderem Blick auf am Boden brütende VogelartenFiderer, Christian Tobias 29 August 2019 (has links)
Seit mehreren Jahrzehnten nehmen die Bestandszahlen von Bodenbrütern europaweit ab, ein Prozess, der hauptsächlich auf die Intensivierung der Landwirtschaft zurückzuführen ist. In diesem Zusammenhang könnte aber auch die zunehmende Prädation von Raubsäugern (Carnivora, Mammalia) eine wichtige Rolle spielen. Ziel dieser Studie war die Bewertung und Einschätzung des Prädationspotentials ausgewählter Raubsäugerarten auf Bodenbrüter im brandenburgischen Vogelschutzgebiet "Mittlere Havelniederung".
Von Mai 2015 bis Juni 2017 wurde die Raumnutzung verschiedener Raubsäugerarten mittels Kamerafallen und einer Telemetriestudie untersucht und anschließend mit den Ergebnissen einer Vogelkartierung verglichen. Ergänzt wurden die Untersuchungen mit einer Losungsanalyse der am häufigsten beobachteten Raubsäugerarten Waschbär (Procyon lotor) und Rotfuchs (Vulpes vulpes). Waschbären wiesen eine hohe Standorttreue sowie eine hohe Präferenz für Gewässer und Feuchtgebiete auf, während Rotfüchse eine hohe intraspezifische Variabilität in Bezug auf ihre Habitatnutzung sowie ein hohes Abwanderungsverhalten zeigten. Die Ergebnisse lassen außerdem ein hohes Prädationspotential des Waschbären auf Wasservögel vermuten, während der Einfluss auf Wiesenbrüter geringer zu sein scheint. Diese scheinen den höchsten Prädationsdruck durch den Rotfuchs zu erfahren. Die Nahrungsanalysen bestätigen diese Ergebnisse und spiegeln auch räumliche Bewegungsmuster beider Arten wieder.
Diese Studie liefert als eine der europaweit ersten Studien empirische Belege für ein starkes indirektes und direktes Prädationspotential des Waschbären insbesondere auf Wasservögel. Zudem hebt diese Studie die Notwendigkeit einer differenzierten Betrachtung potenzieller Auswirkungen von Raubsäugern auf Bodenbrüter hervor und gibt einen Hinweis darauf, dass das Prädationspotential einer Raubsäugerart eng mit der Strukturvielfalt eines Lebensraums und somit mit der Intensität der landwirtschaftlichen Bewirtschaftung zusammenhängt. / Over recent decades, a general decline in ground-nesting bird species has been recorded all over Europe and this trend is mainly a result of agricultural intensification. However, increasing predation pressure by carnivores (Carnivora, Mammalia) might also play an important role in this context. The aim of this study was to assess and evaluate the predatory potential of selected carnivore species on ground-nesting birds in the Special Protection Area `Mittlere Havelniederung’ in Brandenburg, Germany.
Between May 2015 and June 2017, camera- trapping and a telemetry study were carried out to investigate the spatial behavior of mesocarnivore species. Subsequently, spatial data were compared with results of a bird mapping and complemented by an analysis of scat contents of the most abundant carnivore species raccoon (Procyon lotor) and red fox (Vulpes vulpes). Camera trapping revealed a high diversity of carnivores. In addition, spatial distribution patterns showed high site fidelity and an exclusive preference for waters and swamplands in raccoons, while red foxes showed a high level of intraspecific variance in habitat use and a pronounced level of migratory activity. Predator-prey spatial overlap assumes a high potential impact of raccoons on water-associated bird species, while their impact on grassland birds appears not as important. Grassland birds seem to experience highest predatory pressure by red foxes. Dietary analysis support these results and confirm species-specific spatial patterns.
As one of the first studies in Europe, this study provides empirical evidence of raccoons’ strong indirect and direct predatory potential in particular on water-associated bird species. Besides, this study highlights the need for a differentiated view on the potential impact of carnivore species on ground-nesting birds and suggests, that the predatory potential of a carnivore species is linked with landscape diversity and thus with intensity of agricultural land use practices.
|
7 |
Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides), an invasive, alien canid in Central Europe: Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides), an invasive, alien canid in Central EuropeDrygala, Frank 03 December 2009 (has links)
Abstract
Between October 1999 and October 2003, 30 adult and 48 young (&lt; 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006.
No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair sharing the same area all year round.
Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations.
Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe.
Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements.
There were relocations of 59 (43.4%) ear-tagged young racoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radio-collared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.
|
8 |
Space use pattern, dispersal and social organisation of the raccoon dog (Nyctereutes procyonoides GRAY, 1834) an invasive, alien canid in Central EuropeDrygala, Frank 03 December 2009 (has links)
Between October 1999 and October 2003, 30 adult and 48 young (< 1 year) raccoon dogs (Nyctereutes procyonoides) were monitored using radio-telemetry in an area of North-East Germany which has been occupied by this invasive alien species since the early 1990s. Additionally, three pairs of raccoon dogs were observed by continuous radio-tracking during the first six weeks after parturition in 2003. Furthermore 136 raccoon dog pubs were ear-tagged between June 1999 and August 2006.
No adult animals dispersed from the area during the study period and home ranges tended to be used for several years, probably for life. The average annual home range size, calculated using 95% fixed kernel, was 382.2 ha ± 297.4 SD for females (n = 30 seasonal home ranges) and 352.4 ha ± 313.3 SD for males (n = 32 seasonal home ranges). Paired raccoon dogs had home ranges of similar size, with pair mates sharing the same area all year round.
Raccoon dogs occupied large core areas (85% kernel) covering 81.2% of their home ranges. The home ranges were at their smallest during the mating season. The slightly larger size of home ranges in winter suggests that, due to the temperate climate, raccoon dogs do not hibernate in Germany. Males and females formed a long-term (probably lifelong) pair bond. Same-sex neighbours ignored each other and even adjacent males/females showed neither preference nor avoidance. Thus, it can be assumed that the raccoon dog in Central Europe is monogamous without exclusive territories, based on the results of home range overlap analysis and interaction estimations.
Habitat composition within home ranges and within the whole study area was almost equal. Although, percentage shares of farmland and meadow was 16.35% smaller and 12.06% higher within the home ranges, respectively. All nine habitat types (farmland, forest, settlement, water, meadows, maize fields, small woods, reeds and hedges) were used opportunistically by raccoon dogs. No significant, recognisable difference for habitat preferences between seasons was detected. Male and female raccoon dog showed equal habitat preference pattern. A comparison of active and inactive locations in different habitats found no remarkable differences. Habitat composition of individual home ranges was used to classify animals. If the percentage of forest within a home range exceeded 50% the individual was classified as a ‘forest type’ raccoon dog. If the percentage of forest habitats within a home range was less than 5%, the share of pastureland was mean 81.82% ± 16.92 SD. Consequently the individual was classified as a ‘agrarian type’ raccoon dog. Neither habitat preference nor habitat selection process differed between the two ‘types’. Habitat use and preference is discussed with relation to the ability of the raccoon dog to expand its range towards Western Europe.
Males spent noticeably more time (40.5% of the time ±11.7 SD) alone with the pups than females (16.4% of the time ±8.5 SD). Females had noticeably larger 95% kernel home ranges (98.24 ha ±51.71 SD) than males (14.73 ha ±8.16 SD) and moved much longer daily distances (7,368 m ±2,015 SD) than males (4,094 m ±2,886 SD) in six weeks postpartum. The raccoon dogs being studied left the breeding den in the 6th week after the birth of the pups. In situ video observation showed that the male carried prey to the den to provide the female and the litter with food. A clear division of labour took place among parents during the period in which the pups were nursed: males guarded the litter in the den or in close vicinity of it, while the females foraged to satisfy their increased energy requirements.
There were relocations of 59 (43.4%) ear-tagged young raccoon dogs and mean distance from marking point was 13.5 km ±20.1 SD. Dispersal mortality rate was 69.5% among young raccoon dogs. Most animals (55.9%) were recovered nearer than 5 km from the marking point, whereas only 8.5% relocations were recorded further than 50 km from the marking point. There was no difference in the distances of relocations between sexes. Most (53.7%) relocations of ear-tagged young raccoon dogs were in August and September and, only 34.1% were recorded from October to April. Hunting (55 %) and traffic (27 %) were the major mortality factors. Radiocollared young raccoon dogs generally dispersed between July and September. The mean natal home range size (MCP 100%) with and without excursions was 502.6 ha ±66.4 SD (n = 9) and 92.1 ha ±66.4 SD (n = 17), respectively. There were no differences between sexes in the month of dispersal. The direction of travel for dispersing animals appeared to be random, with distances from 0.5 km to 91.2 km. A highly flexible dispersing behaviour is certainly one of the reasons which contribute to the high expansion success of the species.
|
Page generated in 0.0546 seconds