Spelling suggestions: "subject:"halbleiter mikrospektroskopie"" "subject:"halbleiter bodenspektroskopie""
1 |
Non-linear THz spectroscopy in semiconductor quantum structuresTeich, Martin 26 September 2014 (has links)
In this thesis the strong coupling of excitons with intense THz radiation in GaAs/AlGaAs and InGaAs/GaAs multi-quantum wells (MQW) and the strong coupling of electrons to phonons in InAs/GaAs quantum dots (QD) are investigated. Experimental studies in the field of non-linear terahertz (THz) spectroscopy were carried out using the narrowband THz emission of a free-electron laser (FEL). In the first part intra-excitonic transitions are pumped with intense THz radiation.
The THz-pump–near-infrared(NIR)-probe experiments are analysed focusing on the behaviour of the Autler-Townes (AT) splittings with increasing THz field strength. Furthermore measurements of the temperature dependence up to room temperature are discussed. With the help of a microscopic theory the contribution of higher lying intra-excitonic states to the lineshape and splitting of the heavy-hole absorption line is analysed at low temperatures. The second part is about the lifetime and dephasing time of polarons in InAs/GaAs QDs that was measured for inter-sublevel excitation in the THz spectral region (below the Reststrahlen band). Single electrons inside QDs strongly interact with phonons and form quasi-particles called polarons. The temperature dependence of the dephasing behavior and the contribution of pure dephasing is discussed.:1 Introduction 1
2 Theoretical background 5
2.1 Semiconductor quantum structures 5
2.2 Selection rules for optical excitation 8
2.3 Linewidth of an optical transition 10
2.4 Excitons in a quantum well 10
2.4.1 Excitonic linewidth 13
2.4.2 The concept of exciton-polariton and exciton formation 15
2.5 Electron-phonon interaction in a quantum dot 18
2.5.1 Phonons in GaAs 18
2.5.2 Interaction of electrons with phonons 20
2.5.3 The phonon bottleneck 22
2.5.4 Anharmonicity and LO phonon disintegration 23
2.6 Light-matter interaction 27
2.6.1 The two-level system 27
2.6.2 Autler-Townes splitting 30
2.6.3 Optical Bloch Equations 33
2.6.4 Bloch sphere and photon echo 36
3 Experimental Methods 41
3.1 The Dresden free-electron laser FELBE 41
3.2 THz pump - NIR probe setup 43
3.3 QW samples 47
3.4 THz pump-probe and four-wave mixing setup 50
3.5 Thermally annealed QD samples 50
4 Intra-excitonic Autler-Townes effect in quantum wells 55
4.1 Experimental data 56
4.1.1 Resonant and detuned intra-excitonic excitation 56
4.1.2 Anti-crossing behavior 59
4.1.3 Temperature dependence . 60
4.2 Comparison of experimental data with microscopic theory 63
4.2.1 Exciton linewidth 64
4.2.2 Anti-crossing from microscopic theory 69
4.2.3 Rabi oscillations and polarization redistribution 69
4.3 Summary 72
5 Inter-sublevel coherence in InAs/GaAs quantum dots 73
5.1 Strong electron-phonon coupling 74
5.2 Dephasing above the Restrahlen band 77
5.3 Pump-probe and transient four-wave-mixing measurements below the
Reststrahlenband 80
5.4 Temperature dependence 80
5.5 Summary 84
6 Appendix 85
6.1 Appendix A - Autler-Townes splitting calculated in a three-level configuration 85
6.2 Appendix B - Microscopic theory 88
6.3 Appendix C - Coherent oscillations in the THz pump-probe signal 92
Bibliography 94
|
2 |
Acoustic charge and spin transport in sidewall quantum wires on GaAs (001) substratesHelgers, Paulus Leonardus Joseph 08 October 2021 (has links)
Die Ergänzung der konventionellen Elektronik durch die quantenmechanischen Spin Eigenschaften der Elektronen ermöglicht die Entwicklung von schnellen und effizienten Rechnersystemen. Ein bekannter Baustein für solch ein System ist der Datta-Das Spin-Transistor. In dieser Arbeit wird ein akustisch angetriebener Spin-Transistor untersucht, basiert auf Quantendrähten definiert mittels Molekularstrahlepitaxie. Diese Quantendrähte (QWRs: quantum wires) bilden sich während des epitaktischen Überwachsens an den Flanken von Barrenstrukturen auf GaAs (001) Substraten. Elektronen (Löcher), die optisch in den QWR injiziert werden, sind lateral durch eine Potenzialbarriere von 25.4 meV (4.8 meV) zum umgebenden Qauntum Well eingesperrt.
Die Verwendung einer akustischen Oberflächenwelle (AOW) ermöglicht den Transport von Elektronen und Löchern über große Entfernungen von bis zu 90 micron. Die akustische Transportdauer der QWR Ladungsträger entspricht der Dauer, die man aufgrund der akustischen Geschwindigkeit erwartet, d.h. dass die Ladungsträger sehr effizient transportiert werden. Im Fall von niedrigen akustischen Leistungen führen unbeabsichtigte Einfangzentren zu zusätzlichen Hotspots der Ladungsträgerrekombination auf dem Transportweg.
Die intrinsischen Spinlebenszeiten der QWR Ladungsträger betragen ungefähr 2 ns bis 3 ns. Akustischer Spintransport im QWR wird über Entfernungen von mindestens 15 micron beobachtet. Es wird gezeigt, dass für Ladungsträger im QWR das Spin-Bahn Feld, um welches die Spins während des Transportes rotieren, stark von der akustischen Leistung abhängt. Daher stellen Flanken-QWRs auf GaAs (001) Substraten ein vielversprechendes Konzept für die Verwendung in einem akustisch betriebenen Spin-Transistor dar. / Fast and efficient computation devices can be developed by complementing conventional electronics with quantum mechanical spin. A common example for such a building block is the Datta-Das spin transistor. In this thesis, an acoustically driven spin transistor based on acoustic spin transport in quantum wires is investigated. These quantum wires (QWRs) are defined by molecular-beam epitaxy growth. They form on the sidewalls of ridges on GaAs (001) substrates. The edges of the ridges contain deviations from a straight line, originating from the photolithography process. Optically injected electrons and holes in the QWR are laterally confined by a potential barrier between the QWR and the surrounding QW of 25.4 meV and 4.8 meV, respectively.
The application of a surface acoustic wave (SAW) enables the transport of electrons and holes over long distances along the QWR. For high acoustic powers, the charge carriers are transported by the strong SAW potential over distances up to 90 micron. The acoustic transport time of QWR corresponds to the one expected from the acoustic velocity, indicating a high transport efficiency. For lower acoustic powers, unintentional trapping centers lead to hotspots of carrier recombination along the transport path.
The intrinsic spin lifetimes of the QWR carriers are approximately 2 ns to 3 ns. Acoustic spin transport in the QWR is observed over distances of at least 15 micron. It is shown that the spin-orbit field, around which the spins rotate during transport, strongly depends on the acoustic power for the QWR carriers. For high acoustic powers, the QWR spin precession frequency is enhanced by 3.5 times with respect to the intrinsic one.
The results presented in this thesis demonstrate that the strain field of a SAW acts as a strain gate for QWR spins which are transported over a fixed distance. Therefore, the sidewall quantum wire on GaAs (001) substrates is a promising concept to be used in an acoustically driven spin transistor.
|
Page generated in 0.4335 seconds