• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic Properties of Co<sub>1-x</sub>Fe<sub>x</sub>S<sub>2</sub>

Kaster, Brian C. 16 August 2011 (has links)
No description available.
2

Etude de la structure électronique des films minces de magnétite Fe304 (001)/MgO par photoémission résolue en angle / Electronic structure studies of magnetite thin films Fe3O4 (001)/MgO using angle resolved photoemission

Sabra, Maher 13 July 2011 (has links)
La thèse présente l'élaboration et l'étude des films minces (35 nm) cristallins et stœchiométriques de la magnétite Fe304(001)/MgO. La qualité de ces films est étudiée par différentes techniques (DEL, XPS, XMCD, Effet Kerr, Auger). Nous supposons que les films se recouvrent partiellement, même sous ultra vide, par de Fe2O3. Pour la première fois, l'étude de la structure électronique de la bande t2g de ces films est réalisée par photoémission résolue en angle (ARPES)à température ambiante et à 75 K, en utilisant des photons à basses énergies (6eV - 21 eV). Nous avons constaté que le signal de la photoémission est composé des états électroniques de deux périodicités liées à la zone de Brillouin primitive de la surface (a=4.2 Å) et à la zone de Brillouin de la reconstruction de la surface (a=8.4 Å). Nous pensons que la présence des états liés à la reconstruction sont probablement responsables de la chute de la densité d'état à EF. Une signature de Verwey est observée par ARPES à basse température. Nous estimons que la réalisation des films ultra minces de magnétite est difficilement aboutie. / With its half-metallic behavior predicted theoretically, the magnetic oxideFe3O4 (TC = 863 K) is promising for applications in spintronics as thin films.High quality films and the electronic band structure are still a challenge to faceexperimentally. We managed to develop single crystalline Fe3O4(0 0 1) films(35 nm) on MgO. Analysis by XPS, XAS and XMCD allowed to characterizethe quality of the films prepared. The magnetic study shows a perfect XMCDsignal and a form magnetic anisotropy which lays down the axis of easy magnetizationin the film plane. Our samples are stable during the photoemissionmeasurements. The photoemission measurements of the t2g band show thatthe electronic bands cannot be described by a DFT calculation. Indeed, spinpolarons due to strong electron-phonon coupling mechanism are involved inthe electronic transport. Angle-resolved photoemission shows a dispersion ofthe t2g band in the ����M direction corresponding to two periodicities [the unitcell of the surface reconstruction a = 8,4 Å (30% of the signal) and the simpleunit cell of the surface a = 4;2 Å]. At a temperature T < TV (TV = 120 K,Verwey temperature), the angle-resolved photoemission shows the opening ofa 100 meV band gap, with a rigid shift of the spectral weight of the t2g bandto the high binding energy side.
3

Structure électronique et magnétique des oxydes de métaux de transition : le cas de Fe3O4 / Electronic structure and magnetism of transition metal oxides : the case of Fe3O4

Wang, Weimin 28 September 2012 (has links)
La magnétite (Fe3O4) est un candidat prometteur pour des applications dans des dispositifs en spintronique. Ce ferrimagnétique avec une température de Curie élevée a été théoriquement prévu pour être un demi-métal avec un canal conducteur pour les spins minoritaire et un semi-conducteur pour les spins majoritaires, résultant en 100% de polarisation en spin au niveau de Fermi. Cependant, jusqu'à présent, aucune preuve expérimentale claire sur ce sujet n'a été faite. Cette thèse présente des études en photoémission résolue en angle et en spin sur la structure électronique et magnétique de couches minces de Fe3O4 (001) épitaxiées sur MgO(001) . Un calcul de la structure de bande utilisant l'approximation du gradient généralisé (GGA + U) est proposé pour expliquer les résultats expérimentaux. Bien que l'intensité de photémission au niveau de Fermi soit très faible en raison du rôle joué par les polarons, une dispersion de la bande Fe 3d-t2g est observée. Le comportement global de cette bande est en bon accord avec le calcul de la structure état électronique représentant état fondamental. Pour simuler les spectres de photoémission, nous avons utilisé l'approximation de l'électron libre à l'état final, tout en ignorant les éléments de matrice de la transition électronique. Dans la simulation, les bandes calculées sont convoluées respectivement par la lorentzienne et la gaussien pour tenir compte de la durée de vie et des effets de couplage électron-phonon. En intégrant l'intensité spectrale sur un intervalle d'énergie de 100 MeV au niveau de Fermi, nous avons obtenu la première preuve expérimentale de la surface de Fermi. Détermination de la polarisation de spin des électrons est un test ultime des calculs de bandes et des spectres de photoémission modélisés. Dans nos expériences de photoémission résolue en spin, nous avons utilisé des photons de 4.65 et 6.20 eV. Le même échantillon comme pour la photoémission intégré en spin a été mesuré, nécessitant son transfert par l'air dans une autre chambre. L'échantillons n'a pas été soumis à un nettoyage avant les mesures résolues en spin ce a conduit à une réduction de la polarisation en spin à cause de la présence d'une couche polluée sur la surface. Néanmoins, une polarisation de spin de - 50% et -72 % a été mesurée au voisinage de EF respectivement pour les photons de 6.20 et de 4.65 eV. Nous en concluons que Fe3O4 peuvent être décrits par un modèle de bande et en particulier qu'il est demi-métallique. Nous avons également utilisé des impulsions femtoseconde laser dans une expérience pompe-sonde pour étudier la dynamique ultra-rapide à l'échelle atomique. Nos résultats montrent que la durée de vie des électrons excités dans Fe3O4 est beaucoup plus longue que dans un métal «ordinaire». L'analyse de la polarisation en spin des électrons excités montre que la désaimantation ne se produit pas dans le domaine de la femtoseconde, ce qui est compatible avec des propriétés demi-métalliques de la magnétite . / Magnetite (Fe3O4) is a promising candidate for application in spintronic devices. This ferrimagnet with a high Curie temperature has been theoretically predicted to be a half-metal with a conductive minority-spin (↓) channel and a semiconductive majority-spin (↑) channel, resulting in 100 % spin polarization at the Fermi level. But up to now, any clear experimental evidence is lacking. This thesis presents spin- and angle-resolved photoemission studies on the magnetic and electronic structure of Fe3O4 (001) epitaxially grown on MgO (001). A band structure calculation using generalized gradient approximation plus U (GGA+U) to the density functional theory (DFT) is proposed to explain the experimental results. Although the PES intensity at Fermi level is very low because of the role played by polarons, a dispersion of the Fe 3d-t2g states is observed. The overall behaviour of these bands is in good agreement with the calculation of ground state electronic structure. In order to simulate the spectra, we used the free electron approximation for the final states, ignoring the matrix elements. Calculated ground state data are convoluted by Lorentzian and Gaussian functions to account for the lifetime and electron-phonon coupling effects, respectively. By integrating the spectral intensity over an energy interval of 100meV at Fermi level, we obtained the first experimental evidence of the Fermi surface plot. Determination of electron spin polarization is an ultimate test of both the band calculations and our model of Fe3O4 photoemission spectra. In our spin-resolved photoemission experiments 4.65 and 6.20 eV photons were used. The same sample was used as for spin-integrated ARPES, requiring its transfer through air to another chamber. It was not subject to any cleaning prior to the SRPES measurements that lead to a reduction of the spin polarization as a consequence of the presence of a dead layer on the surface. Nevertheless the spin polarization close to EF reaches - 50% and -72% for 6.20 and 4.65 eV photons respectively. We conclude that Fe3O4 can be described within a band model and in particular that it is half-metallic. We also used femtosecond laser pulses in pump-probe experiments to investigate ultrafast dynamics on atomic scale. Our results show that the lifetime of excited electrons in Fe3O4 is much longer than in an “ordinary” metal. From the spin analysis of excited electrons, we deduce that the demagnetization does not occur in the femtosecond range, which is compatible with half-metallic properties of magnetite.</dcterms:abstract> <dc:type xsi:type="dcterms:DCMIType"
4

Magnetic resonance in superconducting junctions / Résonance magnétique dans des jonctions supraconductrices

Elster, Lars 28 September 2016 (has links)
Dans cette thèse, on analyse la possibilité de changer un courant de charge dans des jonctions supraconductrices par une manipulation des propriétés de spin en utilisant la résonance magnétique. On considère deux jonctions différentes: Premièrement, une jonction Josephson non-conventionnelle entre un supraconducteur conventionel de type s et un supraconducteur non-conventionel de type px. Deuxièmement, une jonction entre un demi-métal et un supraconducteur conventionel. La jonction spx contient deux états liés d'Andreev qui sont 2pi-periodiques. Ils donnent lieu à une aimentation spontanée à l'équilibre. Ceci ouvre la possibilité de manipuler l'occupation des niveaux d'Andreev en utilisant un champ magnétique dépendant du temps. On demontre que ce champ induit des oscillations de Rabi cohérentes entre différents états de spin de la jonction. Ces oscillations se manifestent comme des résonances dans la relation courant-phase de la jonction. Pour un champ polarisé circulairement, on trouve une règle de sélection de spin qui autorise des oscillations de Rabi seulement dans un certain interval de phases dans la relation courant-phase permettant une éventuelle détection du spin. De plus, le champ induit des transitions non-cohérentes qui nécessitent la présence d'une quasiparticule dans le continuum d'états. Ces transitions agissent comme processus de recharge et d'ionization pour les niveaux d'Andreev. Pour un champ polarisé circulairement, ces processus induits par le champ ne donnent pas lieu à un mécanisme de relaxation pour les oscillations de Rabi à cause des contraintes en spin et en énergie. Pour un champ polarisé linéairement, il n'y a pas de règle de selection de spin et la largeur des résonances de Rabi dans la relation courant-phase est déterminée par les processus d'ionization induits par le champs. Dans la jonction entre le demi-métal et le supraconducteur conventionel, il n'y a pas de courant pour une aimentation statique, puisque la polarization parfaite en spin du demi-métal interdit les processus de réflexion d'Andreev à l'interface. On demontre que pour une géométrie de point contact, un courant d'Andreev passe, si le demi-métal est soumis à la résonance ferromagnétique. La précession de la direction de l'aimentation dans le demi-métal donne lieu au mécanisme de spin-flip nécessaire. Le courant est forcé par la précession de la direction de l'aimentation qui crée une situation hors équilibre pour les porteurs de charge. De plus, dans un matériau ferromagnétique avec une densité de porteurs minoritaires non-nulle, le courant est réduit et disparaît si les densités majoritaires et minoritaires sont égales. On considère, par ailleurs, une géométrie d'interface étendue, plus réaliste. Pour une jonction ballistique, le courant est augmenté par rapport à la géometrie de point contact, en raison du nombre plus élevé de canaux. De plus, on demontre que le désordre est le plus important dans le matériau ferromagnétique. Le courant d'Andreev à travers la jonction désordonnée est beaucoup plus grand que le courant à travers la jonction ballistique dans la même géométrie. / In this thesis we investigate the possibility to change the charge current in superconducting junctions by manipulating the spin properties using magnetic resonance. We consider two different junctions: First, an unconventional Josephson junction between a conventional s-wave superconductor and an unconventional px-wave superconductor and second a half-metal/conventional superconductor junction. The spx junctions hosts two spin-polarized Andreev bound states, which are 2pi-periodic, giving rise to a spontaneous magnetization in equilibrium. This opens the possibility to manipulate the occupations of the Andreev levels using a time-dependent magnetic field. We show that the field induces coherent Rabi oscillations between different spin states of the junction that appear as resonances in the current-phase relation. For a cicularly polarized magnetic field, we find a spin selection rule, giving Rabi oscillations only in a certain range of superconducting phase differences, which provides a spin detection scheme. In contrary, for a linear polarization, there is no spin constraint on the Rabi oscillations. The field also induces non-coherent transitions including continuum states that act as refill and ionization processes for the Andreev levels. For a circularly polarized field, these field-induced processes do not provide a decay mechanism for Rabi oscillations, due to spin and energy constraints. For a linear polarization, the width of the Rabi resonances in the current-phase relation is determined by the field-induced ionization processes. In the half-metal/conventional superconductor junction no Andreev current may flow for a static magnetization direction, since the perfect spin polarization of the half-metal forbids Andreev reflection processes at the interface. We show that an Andreev current flows, if the half-metal is subject to ferromagnetic resonance. The precessing magnetization direction in the half-metal provides the necessary spin-flip mechanism. The current is driven by the precession of the magnetization direction that creates a non-equilibrium situation for the charge carriers. We also show for a point contact geometry that in a ferromagnet with non-zero minority carrier concentration the current is reduced and vanishes at equal minority and majority carrier concentrations. Additionally, we consider a more realistic, extended interface geometry. For a ballistic junction, the current is enhanced compared to a point contact geometry due to the larger number of transport channels. Furthermore, we show that disorder is most important in the ferromagnet. The Andreev current through the disordered junction is much larger than the current through a ballistic junction in the same geometry.
5

Propriétés électroniques des alliages d'Heusler Co1.5Fe1.5Ge et Co2MnSi / Electronic properties of Heusler alloys Co1.5Fe1.5Ge and Co2MnSi

Neggache, Amina 05 December 2014 (has links)
Le transfert de spin est un moyen de retourner l’aimantation d’une couche dans une jonction tunnel magnétique. Le courant nécessaire à cette tâche dépend des matériaux et dans le contexte actuel consommer moins est devenu un enjeu important. Une solution consiste à utiliser des matériaux ayant une forte polarisation en spin et un faible amortissement magnétique. Ces matériaux sont appelés demi-métaux ferromagnétiques. Du fait de l’existence d’un gap de spin chez les spins minoritaires au niveau de Fermi, ces composés possèdent une polarisation en spin de 100% et un faible amortissement magnétique. En théorie, certains Heusler, tels que Co1.5Fe1.5Ge et Co2MnSi, possèdent ces propriétés s’ils cristallisent dans la bonne phase cristallographique. En pratique, des mesures indirectes semblent confirmer ce comportement mais pourtant aucune preuve directe de cette demi-métallicité n’a été observée jusqu’à présent. C’est dans ce cadre que cette thèse s’inscrit. Après avoir déterminé les conditions de croissance de Co1.5Fe1.5Ge, à l’aide d’une série de mesure et notamment à l’aide de la diffraction anomale, nous avons déterminé l’ordre chimique complet de cet alliage qui est bien celui recherché. Les mesures des propriétés magnétiques donnent des résultats en accord avec la théorie. Mais l’utilisation de ce composé dans des jonctions tunnel magnétiques montre une faible magnétorésistance tunnel. La spectroscopie de photoémission résolue en spin nous a permis d’expliquer ces résultats. Dans le même esprit, nous nous sommes tournés vers le Co2MnSi, un composé qui semble plus prometteur où le gap de spin et de faibles valeurs d’amortissement magnétiques ont été mesurés / Spin transfer is one way of switching the magnetization of a layer in a magnetic tunnel junction. The current needed at this task depends on the materials and in the current context, consume less became an important issue. Materials with a high spin polarization and a low magnetic damping are one solution of this problem. They are called half metal ferromagnets. Because of the existence of a pseudo-gap in the minority spin channel at the Fermi energy, these compounds show a 100% spin polarization and an extremely low magnetic damping. In theory, some Heusler, such as Co1.5Fe1.5Ge and Co2MnSi, possess theses properties if they crystallize in the good crystallographic phase. In practice, there is strong indication of this behavior by mean of indirect techniques. However, no direct evidence of this pseudo-gap has been observed. It is in this context that this thesis is. After having determined growth conditions of Co1.5Fe1.5Ge, by mean of several techniques and especially by anomalous diffraction, we determined the complete chemical order which is the one we were looking for. Magnetic properties measurements show results in agreement with the theory. But the use of this compound in magnetic tunnel junctions shows low tunnel magnetoresistance. Spin resolved photoemission spectroscopy measurements explain very well these results. In the same spirit, we started to study Co2MnSi which seems more promising as this pseudo-gap and low magnetic damping have been observed
6

Half-metal magnets Heusler compounds for spintronics / Les alliages d’Heusler demi-métaux magnétiques pour l’électronique de spin

Guillemard, Charles 17 October 2019 (has links)
L'amélioration des techniques de dépôts et l’évolution de la compréhension de la physique de la matière condensée a conduit à la découverte de phénomènes nouveaux en électronique de spin (spintronique). En particulier, le retournement de l’aimantation par couple de transfert de spin et couple spin-orbite, ainsi que le développement de dispositifs basés sur la propagation d’ondes de spin ont fait de l’amortissement magnétique de Gilbert un paramètre central pour les futures technologies de stockage et de traitement de l’information. Dans cette étude, la prédiction de valeurs très faibles d’amortissement dans les alliages d’Heusler demi métaux magnétiques Co2MnZ est expérimentalement observée et directement corrélée à la structure électronique sous-jacente. En effet, en substituant l’élément Z dans des couches minces monocristallines de haute qualité de Co2MnZ (Z= Al, Si, Ga, Ge, Sn, Sb) faites par épitaxie par jet moléculaire, les propriétés électroniques telles que le gap de spin minoritaire, la position du niveau de Fermi et la polarisation en spin peuvent être accordées et leurs conséquences sur la dynamique de l’aimantation sont analysées. Les résultats expérimentaux nous permettent de comprendre la relation existante entre la structure électronique mesurée et la valeur d’amortissement magnétique, ainsi que de les comparer aux calculs ab initio. Les valeurs d’amortissement entre 4.1 x10-4 et 9 x10-4 pour Co2MnSi, Co2MnGe, Co2MnSn et Co2MnSb sont les plus petites valeurs jamais reportées pour des couches conductrices et constituent une preuve expérimentale qui confirme les prédictions théoriques sur ces alliages d’Heusler demi métaux magnétiques. Ensuite, la relation entre l’amortissement magnétique de Gilbert et le temps de désaimantation ultra-rapide induit par pulse laser dans la série d’alliages quaternaires Co2MnSixAl1-x à polarisation en spin variable est étudiée. Cette partie vise à vérifier des modèles théoriques qui essaient d’unifier ces deux quantités vivant sur des échelles de temps différentes. Finalement, les propriétés structurales et magnétiques de super réseaux Mn3Ga/Co2YZ sont étudiées dans le but de combiner un amortissement de Gilbert très faible, un gap de spin minoritaire ainsi que l’aimantation perpendiculaire aux plans des couches, une caractéristique indispensable pour des dispositifs à faible consommation d’énergie. / Improvements in thin film elaboration methods and a deeper understanding of condensed matter physics have led to new exciting phenomena in spin electronics (spintronics). In particular, magnetization reversal by spin-orbit and spin-transfer torque as well as the development of spin waves based devices have placed the Gilbert magnetic damping coefficient as a key parameter for future data storage and information processing technologies. The prediction of ultralow magnetic damping in Co2MnZ Heusler half-metal magnets is explored in this study and the damping response is shown to be linked to the underlying electronic structure. By substitution of the Z element in high quality Co2MnZ (Z=Al, Si, Ga, Ge, Sn and Sb) epitaxial thin films grown by molecular beam epitaxy, electronic properties such as the minority-spin band gap, Fermi energy position in the band gap, and spin polarization can be tuned and the consequences for magnetization dynamics analyzed. Experimental results allow us to directly explore the interplay of spin polarization, spin gap and Fermi energy position, with the magnetic damping obtained in these films (together with predictions from ab initio calculations). The ultralow magnetic damping coefficients measured in the range from 4.1 x10-4 to 9 x10-4 for Co2MnSi, Co2MnGe, Co2MnSn and Co2MnSb are the lowest values ever reported in conductive layers and offer a clear experimental demonstration of theoretical predictions on half metal magnetic Heusler compounds. Then, the relation between the Gilbert damping and the ultrafast demagnetization time in quaternary Co2MnSixAl1-x compounds with a tunable spin polarization is analyzed. This way, it is possible to confront theoretical models unifying those two quantities that live in different timescales. Finally, structural and magnetic properties of Mn3Ga/Co2YZ Heusler superlattices are investigated in order to combine ultralow Gilbert damping coefficient, minority spin band gap and perpendicularly magnetized heterostructures, another requirement for low energy consumption devices. Through the present work, we aim to prove that Heusler compounds provide an excellent playground to study fundamental magnetism and offer a pathway for future materials design.

Page generated in 0.0394 seconds