Spelling suggestions: "subject:"alides."" "subject:"adalides.""
211 |
The Electronic Spectra of the Oxalyl HalidesBalfour, Joseph Walter 09 1900 (has links)
<p>The near-ultraviolet vapour-phase absorption spectra of oxalyl fluoride, oxalyl chloride and oxalyl bromide have been investigated under low, medium and high resolution. Two discrete spectral systems have been observed for each of these molecules. The transitions responsible for the electronic spectra have been identified as singlet-singlet and singlet-triplet transitions associated with n ➛π * orbital electron promotion. The vibrational and rotational structures accompanying these transitions have been analyzed and are in general agreement with theoretical predictions. The molecules remain planar and trans in their excited states.</p> / Doctor of Philosophy (PhD)
|
212 |
Greener Photoredox-Catalyzed Phosphonations of Aryl HalidesAlexandra Suzanne Kelley (18406143) 03 June 2024 (has links)
<p dir="ltr">Aromatic phosphonates and phosphine oxides are highly desirable synthetic targets used in pharmaceuticals, natural products, agrichemicals, catalysis, and materials science. While a variety of aromatic precursors have been used to access these motifs, aryl halides remain one of the most desirable coupling partners owing to their low cost, commercial availability, and regioselective reactivity. Traditional phosphonation often requires the use of harsh reductants in the presence of liquid ammonia, which are caustic and pose incredible environmental concerns. Milder, transition metal-catalyzed approaches have been developed, but can be limited by air sensitivity, cost, low reaction selectivity, and low functional group compatibility. Photoredox catalysis has been significantly advanced in the past decade in the pursuit of greener, more sustainable avenues to facilitate desirable reaction transformations under mild conditions. These methods most commonly use a dual catalytic strategy in which a metal is paired with an organocatalyst. While these approaches enable facile phosphonation of a variety of aromatic precursors, the metals and organocatalysts used are often expensive and toxic. Indeed, there remains unexplored chemical space for transition metal-free photoredox-catalyzed aryl C-P bond formations. Herein, we present a series of transition metal-free, photoredox-catalyzed approaches to the phosphonation of aryl halides. The approaches and mechanistic works will be discussed in the following order: </p><p dir="ltr">First, the discovery that 10<i>H</i>-phenothiazine (PTZ) enables the transition metal-free phosphonation of aryl halides using trialkyl phosphites will be presented. PTZ serves as a photocatalyst capable of reducing the aryl halide to access aryl radicals, which readily couple with phosphite esters. This transformation exhibits broad functional group tolerance in good to excellent yields. Then, photoredox catalysis by PTZ enables the formation of unsymmetrical aromatic phosphine oxides using triphenylphosphine (PPh<sub>3</sub>) and aryl halides. This is the first work in which PPh<sub>3</sub> has been used as the starting material, and the reaction proceeds via the alkaline hydrolysis of quaternary phosphonium salts. The final work exhibits novel photocatalytic activity of <i>N</i>-heterocyclic carbenes (NHC) to activate aryl halides, form aryl radicals, and enable phosphonation. This method displays broad functional group tolerance under mild conditions and highlights its untapped synthetic utility as a photocatalyst.</p>
|
213 |
Structure and dynamics of superionic conductors at high temperatures and high pressuresGardner, N. J. G. January 1999 (has links)
No description available.
|
214 |
Medidas magneto-óticas de tempos de relaxação Spin-Rede em KBr e nos halogenetos de Na e Cs e estudo de Dicroismo Circular Magnético do Ion Co++ em KCl. / Magneto-optical measurements of spin-lattice relaxation times in KBr, Na and Cs halides and Magnetic Circular Dichroism of Co++ dopped KCl.Carvalho, Rene Ayres 15 February 1977 (has links)
Neste trabalho, descrevemos um espectrômetro ótico para medidas de Dicroismo Circular Magnético (DCM), utilizado nas seguintes experiências: 1) Medidas de tempo de relaxação spin-rede (T1) para centros F em NaCl, NaBr, CsBr e CsCl, a temperatura de 1,8°K em campos magnéticos até 17000Gs. Verificamos a validade da teoria da referência (8) para explicar as diferenças observadas, no comportamento de \'T IND.1\', para halogenetos com diferentes íons alcalinos, bem como diferentes estruturas. Comprovamos que a interação hiperfina ainda continua a ser o mecanismo mais importante para esses centros. Verificamos também que, para temperaturas entre 6°K e l5°K, os valores de experimentais para T1, em KBr, concordam razoavelmente com a teoria da referência (21). Esta terapia é uma extensão daquela da referência (8). 2) Espectros de DCM para KCl: Co++ e CaF2: Co++ foram obtidos para campos magnéticos ate 56KGs e temperaturas entre 1,8°K e 4,2 °K. Os resultados obtidos mostraram ser concordantes com a hipótese dos centros Co++ ocuparem sítios intersticiais na rede de KCl. / In this work we describe a Magnetic Circular Dicroism Spectrometer wich was used in the following experiments: 1) We measured the spin-lattice relaxation time (T1) for F centers in NaCl, NaBr, CsBr and CsCl, at 1,8°K in magnetic fields up to 15000Gs. We verified the suitability of the theory of ref.(O8) to explain the differences observed for halides of differents alkali ions as well as for different structures. This proves that the hyperfine interaction is the most important mechanism for this kind of centers. We also verified that, for temperatures between 6°K and l5°K, T1, the T1 experimental values fits the theory of ref.(21) reasonably well ,for F centers in KBr. This theory is an extension of that of ref.(8). 2) We obtained the MCD spectra for KCl: Co++ and CaF2: Co++ in different magnetic fields up to 56KGs, and in temperature range between 1,8 °K and 4,2°K. Our results are consistent with the assumption that Co++ centers are intersticial in KCl lattice.
|
215 |
A Solid-State 35Cl and 81Br NMR and Computational Study of Chlorine and Bromine Electric Field Gradient and Chemical Shift Tensors in Haloanilinium HalidesAttrell, Robert J 12 January 2012 (has links)
The results of a systematic 35Cl, 81Br, and 127I SSNMR spectroscopic study of a series of halogen-substituted anilinium halide salts are presented. Solid-state NMR of these nuclides, bromine-/81 and iodine-127 in particular, is not well established. Twenty-one compounds thought to exhibit halogen bonding were prepared based on modified literature procedures, and two crystal structures were solved. Experiments show that collection of SSNMR spectra of the anions is feasible, though ultrahigh magnetic fields (21.1 T) and variable offset data acquisition were found to be essential. Electric field gradient and chemical shift tensors are measured experimentally for all 21 compounds, significantly expanding the body of data for the quadrupolar halogen nuclei. Quadrupolar coupling constants for chlorine-35 ranged from 2.12 to 6.04 MHz, for bromine-81 from 12.3 to 45.3 MHz, and for iodine-127 from 57.50 to 152.50 MHz. Gauge-including projector-augmented wave density functional theory (GIPAW-DFT) calculations were used to provide insight as to how the NMR parameters vary with local environment and long-range crystal packing. Overall, calculations reproduced the experimental trends in quadrupolar coupling constants and chemical shift tensor span (Ω) but failed to provide quantitative agreement within experimental error. Experimental and computational data were analyzed in order to provide insight into how halogen bonding influences NMR parameters. Several trends were elucidated from this study, including an inverse correlation between Ω and the length of the shortest halogen-halide contact (d). In selected bromine compounds, for example, Ω (81Br) was measured to increase from 120 to 240 ppm as d decreased from 3.838 to 3.443 Å. In summary, this study has demonstrated the feasibility and utility of quadrupolar halogen SSNMR, and that these techniques may prove useful in characterizing halogen bonding interactions in solids.
|
216 |
A Solid-State 35Cl and 81Br NMR and Computational Study of Chlorine and Bromine Electric Field Gradient and Chemical Shift Tensors in Haloanilinium HalidesAttrell, Robert J 12 January 2012 (has links)
The results of a systematic 35Cl, 81Br, and 127I SSNMR spectroscopic study of a series of halogen-substituted anilinium halide salts are presented. Solid-state NMR of these nuclides, bromine-/81 and iodine-127 in particular, is not well established. Twenty-one compounds thought to exhibit halogen bonding were prepared based on modified literature procedures, and two crystal structures were solved. Experiments show that collection of SSNMR spectra of the anions is feasible, though ultrahigh magnetic fields (21.1 T) and variable offset data acquisition were found to be essential. Electric field gradient and chemical shift tensors are measured experimentally for all 21 compounds, significantly expanding the body of data for the quadrupolar halogen nuclei. Quadrupolar coupling constants for chlorine-35 ranged from 2.12 to 6.04 MHz, for bromine-81 from 12.3 to 45.3 MHz, and for iodine-127 from 57.50 to 152.50 MHz. Gauge-including projector-augmented wave density functional theory (GIPAW-DFT) calculations were used to provide insight as to how the NMR parameters vary with local environment and long-range crystal packing. Overall, calculations reproduced the experimental trends in quadrupolar coupling constants and chemical shift tensor span (Ω) but failed to provide quantitative agreement within experimental error. Experimental and computational data were analyzed in order to provide insight into how halogen bonding influences NMR parameters. Several trends were elucidated from this study, including an inverse correlation between Ω and the length of the shortest halogen-halide contact (d). In selected bromine compounds, for example, Ω (81Br) was measured to increase from 120 to 240 ppm as d decreased from 3.838 to 3.443 Å. In summary, this study has demonstrated the feasibility and utility of quadrupolar halogen SSNMR, and that these techniques may prove useful in characterizing halogen bonding interactions in solids.
|
217 |
Photochemistry of Phenyl HalidesKarlsson, Daniel January 2008 (has links)
We have studied fundamental aspects of photo-induced dissociation kinetics and dynamics in several phenyl halides. By combining femtosecond pump-probe measurements with ab initio calculations we are able to account for several observations. In mixed phenyl halides, the dissociation kinetics is found to be dependent on the nature, the number, and the position of the substituents, and also on the excitation wavelength. A surprisingly large reduction in the dissociation time constant, compared to that of bromobenzene (~30 ps), is observed when having two or more fluorine atoms. For example, in bromopentafluorobenzene a subpicosecond time constant is obtained. This can be explained by a significant lowering of the repulsive potential energy curves (PEC) along the C-Br bond. However, several of the experimental results cannot be accounted for by one-dimensional PECs. Therefore, we suggest a refined model for the dissociation, in which the excited states of the same spin multiplicity are coupled by employing multidimensional potential energy surfaces. This model has been explicitly evaluated by quantum dynamics simulations in the case of 3-BrFPh, and it seems to be capable of capturing the main features in the measured kinetics. Thereby we are also able to clarify the role of spin-orbit coupling in these molecules.
|
218 |
Production of cold barium monohalide ionsDe Palatis, Michael V. 13 January 2014 (has links)
Ion traps are an incredibly versatile tool which have many applications throughout the physical sciences, including such diverse topics as mass spectrometry, precision frequency metrology, tests of fundamental physics, and quantum computing. In this thesis, experiments are presented which involve trapping and measuring properties of Th³⁺. Th³⁺ ions are of unique interest in part because they are a promising platform for studying an unusually low-lying nuclear transition in the 229Th nucleus which could eventually be used as an exceptional optical clock. Here, experiments to measure electronic lifetimes of Th³⁺ are described. A second experimental topic explores the production of sympathetically cooled molecular ions. The study of cold molecular ions has a number of applications, some of which include spectroscopy to aid the study of astrophysical objects, precision tests of quantum electrodynamics predictions, and the study of chemical reactions in the quantum regime. The experiments presented here involve the production of barium monohalide ions, BaX⁺ (X = F, Cl, Br). This type of molecular ion proves to be particularly promising for cooling to the rovibrational ground state. The method used for producing BaX⁺ ions involves reactions between cold, trapped Ba⁺ ions and neutral gas phase reactants at room temperature. The Ba⁺ ion reaction experiments presented in this thesis characterize these reactions for producing Coulomb crystals composed of laser cooled Ba⁺ ions and sympathetically cooled BaX⁺ ions.
|
219 |
A Solid-State 35Cl and 81Br NMR and Computational Study of Chlorine and Bromine Electric Field Gradient and Chemical Shift Tensors in Haloanilinium HalidesAttrell, Robert J 12 January 2012 (has links)
The results of a systematic 35Cl, 81Br, and 127I SSNMR spectroscopic study of a series of halogen-substituted anilinium halide salts are presented. Solid-state NMR of these nuclides, bromine-/81 and iodine-127 in particular, is not well established. Twenty-one compounds thought to exhibit halogen bonding were prepared based on modified literature procedures, and two crystal structures were solved. Experiments show that collection of SSNMR spectra of the anions is feasible, though ultrahigh magnetic fields (21.1 T) and variable offset data acquisition were found to be essential. Electric field gradient and chemical shift tensors are measured experimentally for all 21 compounds, significantly expanding the body of data for the quadrupolar halogen nuclei. Quadrupolar coupling constants for chlorine-35 ranged from 2.12 to 6.04 MHz, for bromine-81 from 12.3 to 45.3 MHz, and for iodine-127 from 57.50 to 152.50 MHz. Gauge-including projector-augmented wave density functional theory (GIPAW-DFT) calculations were used to provide insight as to how the NMR parameters vary with local environment and long-range crystal packing. Overall, calculations reproduced the experimental trends in quadrupolar coupling constants and chemical shift tensor span (Ω) but failed to provide quantitative agreement within experimental error. Experimental and computational data were analyzed in order to provide insight into how halogen bonding influences NMR parameters. Several trends were elucidated from this study, including an inverse correlation between Ω and the length of the shortest halogen-halide contact (d). In selected bromine compounds, for example, Ω (81Br) was measured to increase from 120 to 240 ppm as d decreased from 3.838 to 3.443 Å. In summary, this study has demonstrated the feasibility and utility of quadrupolar halogen SSNMR, and that these techniques may prove useful in characterizing halogen bonding interactions in solids.
|
220 |
Guest intercalation into metal halide inorganic-organic layered perovskite hybrid solids and hydrothermal synthesis of tin oxide spheresBandara, Nilantha, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Chemistry. / Title from title screen. Includes bibliographical references.
|
Page generated in 0.0293 seconds