• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Capacidade proliferativa in vitro de precursores neuro-gliais, telencefálicos e expressão dos genes 1 e 2 do Complexo da Esclerose Tuberosa (TSC1 e TSC2) / Proliferation capability of telencephalic neuroglial progenitors and expression of the Tuberous Sclerosis Complex 1 and 2 genes (TSC1 and TSC2)

Marín, Alexandra Belén Saona 10 December 2012 (has links)
O complexo da esclerose tuberosa (TSC) é um transtorno clínico, com expressividade variável, caracterizado por hamartomas que podem ocorrer em diferentes órgãos. Tem herança autossômica dominante e é devido a mutações em um de dois genes supressores de tumor, TSC1 ou TSC2. Estes codificam para as proteínas hamartina e tuberina, respectivamente, que se associam formando um complexo macromolecular que regula funções como proliferação, diferenciação, crescimento e migração celular. As lesões cerebrais podem ser muito graves em pacientes com TSC e caracterizam-se por nódulos subependimários (SEN), astrocitomas subependimários de células gigantes (SEGA), tuberosidades corticais e heterotopias neuronais, podendo relacionar-se clinicamente à epilepsia refratária à terapia medicamentosa, deficiência intelectual, desordens do comportamento e hidrocefalia. O potencial de crescimento de SEGA até os 21 anos de idade dos pacientes exige acompanhamento periódico por exame de imagem e condutas clínicas ou cirúrgicas, conforme indicação médica. As lesões subependimárias têm sido explicadas por déficits de controle da proliferação, crescimento e diferenciação de precursores neuro-gliais na zona subventricular telencefálica. Embora a capacidade da tuberina em inibir a proliferação celular pela repressão do alvo da rapamicina em mamíferos (mTOR) esteja bem documentada, outros aspectos celulares do desenvolvimento de SEGA ainda não foram examinados. Assim, é importante estabelecer um sistema in vitro para o estudo de células da zona subventricular e testá-lo na análise das proteínas hamartina e tuberina. Neste sentido, o cultivo de neuroesferas em suspensão é muito apropriado. Neste estudo, buscamos relacionar a expressão e distribuição subcelular da hamartina e tuberina à capacidade proliferativa e de diferenciação das células de neuroesferas cultivadas in vitro a partir da dissociação da vesícula telencefálica de embriões de ratos normais. Analisamos a expressão e distribuição subcelular da hamartina e tuberina por imunofluorescência indireta em células entre a primeira e a quarta passagens das neuroesferas, sincronizadas nas fases G1 ou S do ciclo celular e após a reentrada no ciclo celular, através da incorporação de 5-bromo-2\'-desoxiuridina (BrdU) e imunofluorescência com anticorpo anti-BrdU. Em geral, células de neuroesferas apresentaram baixa colocalização entre hamartina e tuberina in vitro. A expressão da tuberina foi elevada em basicamente todas as células das esferas e fases do ciclo celular; ao contrário, a hamartina apresentou-se principalmente nas células da periferia das esferas. A colocalização entre hamartina e tuberina foi observada em células mais periféricas das esferas, sobretudo no citoplasma e, em G1, no núcleo celular. A proteína rheb, que conhecidamente interage diretamente com a tuberina, apresentou distribuição subcelular muito semelhante à desta. Ao carenciamento das células visando à parada do ciclo celular na transição G1/S, tuberina distribuiu-se ao núcleo celular em quase todas as células avaliadas e, de forma menos frequente, a hamartina também. À reentrada no ciclo celular pelo reacréscimo dos fatores de crescimento, avaliaram-se células com incorporação de BrdU ao seu núcleo celular, após 72 e 96 horas. Nestas, tuberina mostrou-se novamente no citoplasma de forma preponderante e hamartina manteve-se citoplasmática, em geral subjacente à membrana plasmática, em níveis mais baixos. Os grupos cujas células reciclaram por 72 ou 96 horas diferiram quanto ao aumento significativo da expressão da hamartina em células proliferativas no último. À diferenciação neuronal, aumentaram-se os níveis de expressão de hamartina observáveis à imunofluorescência indireta, tornando-se equivalentes àqueles da tuberina. Concluímos que as células de neuroesferas cultivadas em suspensão apresentam-se como um sistema apropriado ao estudo da distribuição das proteínas hamartina e tuberina e sua relação com o ciclo celular / The tuberous sclerosis complex (TSC) is a clinical disorder with variable expressivity, characterized by hamartomas that can occur in different organs. It has autosomal dominant inheritance and is due to mutations in one of two tumor suppressor genes, TSC1 or TSC2. These encode for the proteins hamartin and tuberin, respectively, which are associated in a macromolecular complex which functions as a regulator of cell proliferation, differentiation, growth and migration. TSC brain lesions may be severe and are characterized by subependymal nodules (SEN), subependymal giant cell astrocytomas (SEGA), neuronal heterotopias and cortical tubers, and may be clinically related to refractory epilepsy, intellectual disability, behavioral disorders and hydrocephaly. The growth potential of SEGA up to 21 years of age in TSC patients requires regular monitoring by imaging. Clinical and surgical interventions may be medically indicated. Subependymal lesions have been explained by deficient control of proliferation, growth and differentiation of neuro-glial progenitors from the telencephalic subventricular zone. While tuberin ability to inhibit cell proliferation by repressing the mammalian target of rapamycin (mTOR) has been well documented, other cell aspects of SEGA development have not been thoroughly examined. Therefore, it is important to establish conditions for an in vitro system to study the cells from the subventricular zone and to test its suitability for the study of the TSC proteins. In this regard, the neurosphere suspension culture is very appropriate. We evaluated the expression and subcellular distribution of hamartin and tuberin in relation to the proliferation and differentiation capability of neurosphere cells derived in vitro from the dissociation of the telencephalic vesicle of normal E14 rat embryos. These analyses were performed by indirect immunofluorescence in cells from first through fourth passages of neurospheres, synchronized in G1 or S phases of the cell cycle, and after reentry into the cell cycle by the addition of 5-brome-2\'-desoxyuridine (BrdU) and immunolabeling with anti-BrdU antibody. In general, neurosphere cells presented low colocalization between hamartin and tuberin in vitro. Tuberin expression was relatively high in basically all neurosphere cells and cell cycle phases, whereas hamartin distributed mainly to cells from the periphery of the spheres. In these cells, hamartin and tuberin colocalization was evident mostly in the cytoplasm and, in G1, also in the cell nucleus. Rheb, which is known to interact directly with tuberin, had subcellular distribution very similar to tuberin. Cell starvation indicating cell cycle arrest at G1/S redistributed tuberin to the cell nucleus in virtually all cells examined, what was accompanied by nuclear location of hamartin in a small subset of cells. When cells were allowed to reenter cell cycle by adding growth factors, we evaluated BrdU-labeled nuclei 72 and 96 hours later. In the two groups, tuberin was shown to move back to the cytoplasm as well as hamartin, which apparently maintained its lower expression levels distribution underneath the plasma membrane. Group of cells that recycled for 96 hours had significantly more expression of hamartin than those cells that cycled for only 72 hours. After neuronal differentiation, hamartin expression levels observed by immunofluorescence were similar to those of tuberin. We conclude that neurosphere cells cultured in suspension showed to be an appropriate cell system to study hamartin and tuberin distribution in respect to the cell cycle
2

Gene Expression Profiling And Insights Into The Involvement Of The Insulin Signaling Pathway In Oral Cancer

Chakraborty, Sanjukta 03 1900 (has links)
1. Despite extensive research on oral squamous cell carcinoma (OSCC), its five-year survival rate has not improved for the last two decades. Effective treatment of OSCC requires the identification of molecular targets to design appropriate therapeutic strategies. To this end, DDRT-PCR analysis was used to identify molecular markers, which could be used as therapeutic targets. 2. DDRT-PCR in combination with reverse Northern analysis identified 25 differentially expressed genes in oral tumors. Fourteen genes did not show homology to any known gene in the database and therefore may represent non-specific genomic DNA sequences or novel genes that have not yet been identified. The remaining 11 genes showed homology to known genes such as DIAPH1, NJMU-R1, RBM28, PCNA, GLTP, MTATP6, ZKSCAN1, TNKS2, PAM, TUBB2C and C14orf154. TNKS2, PAM, TUBB2C and C14orf154 showed downregulation and the remaining seven genes were upregulated in oral tumor samples. 3. To reconfirm the results of DDRT-PCR and reverse Northern blot analyses, Northern blot analysis was carried out on matched normal and tumor samples for a few genes. As expected, PCNA, NJMU-R1 and ZKSCAN1 showed upregulation, whereas TUBB2C showed downregulation in the tumor sample. PCNA was also found to be upregulated in tumor samples at the protein level. 4. The expression of eight differentially expressed genes (viz., DIAPH1, NJMU-R1, RBM28, PCNA, GLTP, TNKS2, PAM and TUBB2C) was also validated in a panel of 16 matched normal and tumor samples. The mean mRNA expression levels of GLTP, PCNA, RBM28, NJMU-R1 and DIAPH1 were significantly greater in tumor samples than in normal samples. The mean expression levels of TNKS2, PAM and TUBB2C were significantly lower in tumor samples than in normal samples. 5. As some of the genes like NJMU-R1, RBM28, GLTP and PAM are found to differentially regulated in a majority of the tumors, they could be used as potential markers in oral cancer. 6. Tuberin and hamartin have been placed as a complex in the insulin signaling pathway and are known to negatively regulate this pathway. Since overexpression of TSC2 has been previously shown to exert antitumor effect on two oral cancer cell lines, and some components of the insulin signaling pathway have already been implicated in head and neck cancers, we reasoned that both TSC genes and other key players of this pathway might be differentially regulated in oral tumors. Northern blot analysis showed downregulation of the TSC2 gene in an oral tumor sample. In order to further validate the expression pattern of the TSC2 gene, a semiquantative RT-PCR analysis was carried out in a panel of 16 matched normal and tumor samples. The mean expression level of TSC2 was significantly lower in tumor samples than in normal tissue samples. The mean expression level of its interacting partner TSC1 was also significantly lower in tumor samples than in normal tissue samples, suggesting the involvement of these genes in the etiology of oral cancer. TSC1 and TSC2 were also downregulated in eight matched normal and tumor samples at the protein level. We wanted further to determine the expression of both TSC genes in cell lines. Interestingly, TSC2 did not show a detectable level of expression in an oral cancer cell line SCC 131, whereas it was expressed in two other oral cancer cell lines KB and SCC 104 as well as in four non-oral cell lines: A549, HEK-293T, HeLa and HepG2 at the protein level. The TSC2 expression in KB was, however, lower than in other cell lines. TSC1 was expressed in all the cell lines, albeit at different levels. The TSC1 expression was lower in SCC 131 as compared to two other cell lines KB and SCC 104. 7. Given the fact that both are tumor suppressors, it was hypothesized that LOH, inactivating somatic mutations and/or promoter methylation might be playing a role for their downregulation in oral tumors. Mutation analysis of all the coding regions of both the TSC genes failed to detect any mutation in a panel of 25 tumor samples. However, seven normal population variants were identified in different patients. Our analysis of the matched peripheral blood and tumor DNA samples from 52 patients showed LOH at both the TSC loci. At the TSC1 locus, 17/48 (35.42%) tumors showed an allelic loss for one or more markers. At the TSC2 locus, LOH was found in 18/48 (37.5%) informative cases. Nine patients (9/48, 18.75%) had LOH at both the TSC loci. Since PTEN is another tumor suppressor in the insulin signaling pathway, we then sought to determine if LOH is also present in the PTEN candidate region in a panel of 50 matched samples. Microsatellite analysis using three markers showed a low LOH rate of 13% in tumor samples. 8. As the OSCC cell line SCC 131 did not show a detectable level of TSC2 expression, we treated this cell line with methylation inhibition drug 5-azacytidine. The treatment restored the expression of TSC2 and increased the expression of TSC1, suggesting that the promoter methylation and LOH are the important mechanisms for their downregulation. In order to see if the downregulation of the TSC genes is due to their promoters being methylated in tumors from the patients, we examined the methylation status of their promoters in 16 oral tumors, three normal oral tissues, two peripheral blood DNA samples from normal individuals and two cell lines HeLa and SCC 131 by COBRA. Our repeated efforts to amplify the TSC1 promoter using different DNA polymerases failed. However, we were able to successfully amplify the 571 bp long TSC2 promoter. Our analysis showed methylation of the TSC2 promoter in all tumors and two cell lines. As expected, the TSC2 promoter was not methylated in normal oral tissues and control blood DNA samples. Our bisulfite sequencing data suggested a low level and a considerable heterogeneity of methylation. 9. Using Fisher’s exact test, no correlation was found between LOH at the TSC loci and different clinical parameters such as age, sex, T classification, stage, grade, histology, tobacco habits and lymph node metastasis. 10. Using Fisher’s exact test, no correlation was found between the TSC2 promoter methylation and its downregulation in 16 tumor samples. We believe that this could be due to small sample size. 11. Since TSC1 and TSC2 are important regulators of the insulin pathway, it was hypothesized that other key players of this pathway might also be dysregulated in oral cancer. To this end, the expression pattern of some of the major regulators of the insulin pathway (viz., PI3K, AKT, PDK1, RHEB, mTOR, S6K1, S6, eIF4E, 4E-BP1, PTEN, 14-3-3゚ and IRS1) was investigated using semiquantative RT-PCR in a panel of 16 matched normal and tumor samples. The mean expression levels of the following genes showed significant upregulation in tumor samples: AKT, PI3K, PDK1, RHEB, mTOR, S6K1, S6 and eIF4E. On the other hand, 4E-BP1 and PTEN showed significant downregulation in tumor tissues. No significant difference in the expression was found for 14-3-3゚ and IRS1 between tumor and normal tissues. The expression pattern of some of these genes was also analyzed at the protein level using Western blot analysis and eight matched normal and tumor tissues. The level of total AKT was upregulated in 2/8 tumor samples only. However, phosphorylated-AKT (Thr308) showed upregulation in 6/8 samples. p70S6K1 and phosphorylated-p70S6K1 (Thr389) were upregulated in 8/8 and 6/8 tumor samples, respectively. Increase in the phosphorylated forms of both AKT and its downstream effector p70S6K1 suggested an increase in their kinase activity, indicating a constitutive activation of this pathway in oral cancer. 12. Based on our findings of mutation analysis, LOH study, 5-azacytidine treatment of an oral cancer cell line and COBRA analysis, we suggest that LOH at the TSC gene loci and promoter methylation are important mechanisms for the downregulation of the TSC genes. Loss of function of these genes may thus contribute to the constitutive activation of the insulin signaling pathway in oral cancer, leading to overall cell growth and proliferation. Our studies have shown that several key members of this pathway show aberrant expression in a subset of cancers of the oral cavity and can provide useful therapeutic targets. Several inhibitors of the insulin signaling pathway, such as rapamycin and its derivatives which inhibit mTOR and the PI3K inhibitor wortmannin, are now being actively evaluated for clinical trials for other cancers. We suggest that these inhibitors could also be evaluated for the treatment of oral cancer in future. Our differential display analysis has served to identify several genes that may be important for the onset and progression of oral cancer. Further analysis of these genes is warranted.
3

Capacidade proliferativa in vitro de precursores neuro-gliais, telencefálicos e expressão dos genes 1 e 2 do Complexo da Esclerose Tuberosa (TSC1 e TSC2) / Proliferation capability of telencephalic neuroglial progenitors and expression of the Tuberous Sclerosis Complex 1 and 2 genes (TSC1 and TSC2)

Alexandra Belén Saona Marín 10 December 2012 (has links)
O complexo da esclerose tuberosa (TSC) é um transtorno clínico, com expressividade variável, caracterizado por hamartomas que podem ocorrer em diferentes órgãos. Tem herança autossômica dominante e é devido a mutações em um de dois genes supressores de tumor, TSC1 ou TSC2. Estes codificam para as proteínas hamartina e tuberina, respectivamente, que se associam formando um complexo macromolecular que regula funções como proliferação, diferenciação, crescimento e migração celular. As lesões cerebrais podem ser muito graves em pacientes com TSC e caracterizam-se por nódulos subependimários (SEN), astrocitomas subependimários de células gigantes (SEGA), tuberosidades corticais e heterotopias neuronais, podendo relacionar-se clinicamente à epilepsia refratária à terapia medicamentosa, deficiência intelectual, desordens do comportamento e hidrocefalia. O potencial de crescimento de SEGA até os 21 anos de idade dos pacientes exige acompanhamento periódico por exame de imagem e condutas clínicas ou cirúrgicas, conforme indicação médica. As lesões subependimárias têm sido explicadas por déficits de controle da proliferação, crescimento e diferenciação de precursores neuro-gliais na zona subventricular telencefálica. Embora a capacidade da tuberina em inibir a proliferação celular pela repressão do alvo da rapamicina em mamíferos (mTOR) esteja bem documentada, outros aspectos celulares do desenvolvimento de SEGA ainda não foram examinados. Assim, é importante estabelecer um sistema in vitro para o estudo de células da zona subventricular e testá-lo na análise das proteínas hamartina e tuberina. Neste sentido, o cultivo de neuroesferas em suspensão é muito apropriado. Neste estudo, buscamos relacionar a expressão e distribuição subcelular da hamartina e tuberina à capacidade proliferativa e de diferenciação das células de neuroesferas cultivadas in vitro a partir da dissociação da vesícula telencefálica de embriões de ratos normais. Analisamos a expressão e distribuição subcelular da hamartina e tuberina por imunofluorescência indireta em células entre a primeira e a quarta passagens das neuroesferas, sincronizadas nas fases G1 ou S do ciclo celular e após a reentrada no ciclo celular, através da incorporação de 5-bromo-2\'-desoxiuridina (BrdU) e imunofluorescência com anticorpo anti-BrdU. Em geral, células de neuroesferas apresentaram baixa colocalização entre hamartina e tuberina in vitro. A expressão da tuberina foi elevada em basicamente todas as células das esferas e fases do ciclo celular; ao contrário, a hamartina apresentou-se principalmente nas células da periferia das esferas. A colocalização entre hamartina e tuberina foi observada em células mais periféricas das esferas, sobretudo no citoplasma e, em G1, no núcleo celular. A proteína rheb, que conhecidamente interage diretamente com a tuberina, apresentou distribuição subcelular muito semelhante à desta. Ao carenciamento das células visando à parada do ciclo celular na transição G1/S, tuberina distribuiu-se ao núcleo celular em quase todas as células avaliadas e, de forma menos frequente, a hamartina também. À reentrada no ciclo celular pelo reacréscimo dos fatores de crescimento, avaliaram-se células com incorporação de BrdU ao seu núcleo celular, após 72 e 96 horas. Nestas, tuberina mostrou-se novamente no citoplasma de forma preponderante e hamartina manteve-se citoplasmática, em geral subjacente à membrana plasmática, em níveis mais baixos. Os grupos cujas células reciclaram por 72 ou 96 horas diferiram quanto ao aumento significativo da expressão da hamartina em células proliferativas no último. À diferenciação neuronal, aumentaram-se os níveis de expressão de hamartina observáveis à imunofluorescência indireta, tornando-se equivalentes àqueles da tuberina. Concluímos que as células de neuroesferas cultivadas em suspensão apresentam-se como um sistema apropriado ao estudo da distribuição das proteínas hamartina e tuberina e sua relação com o ciclo celular / The tuberous sclerosis complex (TSC) is a clinical disorder with variable expressivity, characterized by hamartomas that can occur in different organs. It has autosomal dominant inheritance and is due to mutations in one of two tumor suppressor genes, TSC1 or TSC2. These encode for the proteins hamartin and tuberin, respectively, which are associated in a macromolecular complex which functions as a regulator of cell proliferation, differentiation, growth and migration. TSC brain lesions may be severe and are characterized by subependymal nodules (SEN), subependymal giant cell astrocytomas (SEGA), neuronal heterotopias and cortical tubers, and may be clinically related to refractory epilepsy, intellectual disability, behavioral disorders and hydrocephaly. The growth potential of SEGA up to 21 years of age in TSC patients requires regular monitoring by imaging. Clinical and surgical interventions may be medically indicated. Subependymal lesions have been explained by deficient control of proliferation, growth and differentiation of neuro-glial progenitors from the telencephalic subventricular zone. While tuberin ability to inhibit cell proliferation by repressing the mammalian target of rapamycin (mTOR) has been well documented, other cell aspects of SEGA development have not been thoroughly examined. Therefore, it is important to establish conditions for an in vitro system to study the cells from the subventricular zone and to test its suitability for the study of the TSC proteins. In this regard, the neurosphere suspension culture is very appropriate. We evaluated the expression and subcellular distribution of hamartin and tuberin in relation to the proliferation and differentiation capability of neurosphere cells derived in vitro from the dissociation of the telencephalic vesicle of normal E14 rat embryos. These analyses were performed by indirect immunofluorescence in cells from first through fourth passages of neurospheres, synchronized in G1 or S phases of the cell cycle, and after reentry into the cell cycle by the addition of 5-brome-2\'-desoxyuridine (BrdU) and immunolabeling with anti-BrdU antibody. In general, neurosphere cells presented low colocalization between hamartin and tuberin in vitro. Tuberin expression was relatively high in basically all neurosphere cells and cell cycle phases, whereas hamartin distributed mainly to cells from the periphery of the spheres. In these cells, hamartin and tuberin colocalization was evident mostly in the cytoplasm and, in G1, also in the cell nucleus. Rheb, which is known to interact directly with tuberin, had subcellular distribution very similar to tuberin. Cell starvation indicating cell cycle arrest at G1/S redistributed tuberin to the cell nucleus in virtually all cells examined, what was accompanied by nuclear location of hamartin in a small subset of cells. When cells were allowed to reenter cell cycle by adding growth factors, we evaluated BrdU-labeled nuclei 72 and 96 hours later. In the two groups, tuberin was shown to move back to the cytoplasm as well as hamartin, which apparently maintained its lower expression levels distribution underneath the plasma membrane. Group of cells that recycled for 96 hours had significantly more expression of hamartin than those cells that cycled for only 72 hours. After neuronal differentiation, hamartin expression levels observed by immunofluorescence were similar to those of tuberin. We conclude that neurosphere cells cultured in suspension showed to be an appropriate cell system to study hamartin and tuberin distribution in respect to the cell cycle
4

Na+/K+ Pump and Cl--coupled Na+ and K+ co-transporters in Mouse Embryonic Fibroblasts lacking the Tuberous Sclerosis Complex TSC1 and TSC2 genes.

Alzhrani, Jasser Ali S. 28 August 2015 (has links)
No description available.

Page generated in 0.0534 seconds