• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 45
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Hardware and software co-design toward flexible terabits per second traffic processing / Co-conception matérielle et logicielle pour du traitement de trafic flexible au-delà du terabit par seconde

Cornevaux-Juignet, Franck 04 July 2018 (has links)
La fiabilité et la sécurité des réseaux de communication nécessitent des composants efficaces pour analyser finement le trafic de données. La diversification des services ainsi que l'augmentation des débits obligent les systèmes d'analyse à être plus performants pour gérer des débits de plusieurs centaines, voire milliers de Gigabits par seconde. Les solutions logicielles communément utilisées offrent une flexibilité et une accessibilité bienvenues pour les opérateurs du réseau mais ne suffisent plus pour répondre à ces fortes contraintes dans de nombreux cas critiques.Cette thèse étudie des solutions architecturales reposant sur des puces programmables de type Field-Programmable Gate Array (FPGA) qui allient puissance de calcul et flexibilité de traitement. Des cartes équipées de telles puces sont intégrées dans un flot de traitement commun logiciel/matériel afin de compenser les lacunes de chaque élément. Les composants du réseau développés avec cette approche innovante garantissent un traitement exhaustif des paquets circulant sur les liens physiques tout en conservant la flexibilité des solutions logicielles conventionnelles, ce qui est unique dans l'état de l'art.Cette approche est validée par la conception et l'implémentation d'une architecture de traitement de paquets flexible sur FPGA. Celle-ci peut traiter n'importe quel type de paquet au coût d'un faible surplus de consommation de ressources. Elle est de plus complètement paramétrable à partir du logiciel. La solution proposée permet ainsi un usage transparent de la puissance d'un accélérateur matériel par un ingénieur réseau sans nécessiter de compétence préalable en conception de circuits numériques. / The reliability and the security of communication networks require efficient components to finely analyze the traffic of data. Service diversification and through put increase force network operators to constantly improve analysis systems in order to handle through puts of hundreds,even thousands of Gigabits per second. Commonly used solutions are software oriented solutions that offer a flexibility and an accessibility welcome for network operators, but they can no more answer these strong constraints in many critical cases.This thesis studies architectural solutions based on programmable chips like Field-Programmable Gate Arrays (FPGAs) combining computation power and processing flexibility. Boards equipped with such chips are integrated into a common software/hardware processing flow in order to balance short comings of each element. Network components developed with this innovative approach ensure an exhaustive processing of packets transmitted on physical links while keeping the flexibility of usual software solutions, which was never encountered in the previous state of theart.This approach is validated by the design and the implementation of a flexible packet processing architecture on FPGA. It is able to process any packet type at the cost of slight resources over consumption. It is moreover fully customizable from the software part. With the proposed solution, network engineers can transparently use the processing power of an hardware accelerator without the need of prior knowledge in digital circuit design.
32

High Performance FPGA-Based Computation and Simulation for MIMO Measurement and Control Systems

Palm, Johan January 2009 (has links)
<p>The Stressometer system is a measurement and control system used in cold rolling to improve the flatness of a metal strip. In order to achieve this goal the system employs a multiple input multiple output (MIMO) control system that has a considerable number of sensors and actuators. As a consequence the computational load on the Stressometer control system becomes very high if too advance functions are used. Simultaneously advances in rolling mill mechanical design makes it necessary to implement more complex functions in order for the Stressometer system to stay competitive. Most industrial players in this market considers improved computational power, for measurement, control and modeling applications, to be a key competitive factor. Accordingly there is a need to improve the computational power of the Stressometer system. Several different approaches towards this objective have been identified, e.g. exploiting hardware parallelism in modern general purpose and graphics processors.</p><p>Another approach is to implement different applications in FPGA-based hardware, either tailored to a specific problem or as a part of hardware/software co-design. Through the use of a hardware/software co-design approach the efficiency of the Stressometer system can be increased, lowering overall demand for processing power since the available resources can be exploited more fully. Hardware accelerated platforms can be used to increase the computational power of the Stressometer control system without the need for major changes in the existing hardware. Thus hardware upgrades can be as simple as connecting a cable to an accelerator platform while hardware/software co-design is used to find a suitable hardware/software partition, moving applications between software and hardware.</p><p>In order to determine whether this hardware/software co-design approach is realistic or not, the feasibility of implementing simulator, computational and control applications in FPGAbased hardware needs to be determined. This is accomplished by selecting two specific applications for a closer study, determining the feasibility of implementing a Stressometer measuring roll simulator and a parallel Cholesky algorithm in FPGA-based hardware.</p><p>Based on these studies this work has determined that the FPGA device technology is perfectly suitable for implementing both simulator and computational applications. The Stressometer measuring roll simulator was able to approximate the force and pulse signals of the Stressometer measuring roll at a relative modest resource consumption, only consuming 1747 slices and eight DSP slices. This while the parallel FPGA-based Cholesky component is able to provide performance in the range of GFLOP/s, exceeding the performance of the personal computer used for comparison in several simulations, although at a very high resource consumption. The result of this thesis, based on the two feasibility studies, indicates that it is possible to increase the processing power of the Stressometer control system using the FPGA device technology.</p>
33

High Performance FPGA-Based Computation and Simulation for MIMO Measurement and Control Systems

Palm, Johan January 2009 (has links)
The Stressometer system is a measurement and control system used in cold rolling to improve the flatness of a metal strip. In order to achieve this goal the system employs a multiple input multiple output (MIMO) control system that has a considerable number of sensors and actuators. As a consequence the computational load on the Stressometer control system becomes very high if too advance functions are used. Simultaneously advances in rolling mill mechanical design makes it necessary to implement more complex functions in order for the Stressometer system to stay competitive. Most industrial players in this market considers improved computational power, for measurement, control and modeling applications, to be a key competitive factor. Accordingly there is a need to improve the computational power of the Stressometer system. Several different approaches towards this objective have been identified, e.g. exploiting hardware parallelism in modern general purpose and graphics processors. Another approach is to implement different applications in FPGA-based hardware, either tailored to a specific problem or as a part of hardware/software co-design. Through the use of a hardware/software co-design approach the efficiency of the Stressometer system can be increased, lowering overall demand for processing power since the available resources can be exploited more fully. Hardware accelerated platforms can be used to increase the computational power of the Stressometer control system without the need for major changes in the existing hardware. Thus hardware upgrades can be as simple as connecting a cable to an accelerator platform while hardware/software co-design is used to find a suitable hardware/software partition, moving applications between software and hardware. In order to determine whether this hardware/software co-design approach is realistic or not, the feasibility of implementing simulator, computational and control applications in FPGAbased hardware needs to be determined. This is accomplished by selecting two specific applications for a closer study, determining the feasibility of implementing a Stressometer measuring roll simulator and a parallel Cholesky algorithm in FPGA-based hardware. Based on these studies this work has determined that the FPGA device technology is perfectly suitable for implementing both simulator and computational applications. The Stressometer measuring roll simulator was able to approximate the force and pulse signals of the Stressometer measuring roll at a relative modest resource consumption, only consuming 1747 slices and eight DSP slices. This while the parallel FPGA-based Cholesky component is able to provide performance in the range of GFLOP/s, exceeding the performance of the personal computer used for comparison in several simulations, although at a very high resource consumption. The result of this thesis, based on the two feasibility studies, indicates that it is possible to increase the processing power of the Stressometer control system using the FPGA device technology.
34

Entwurf, Methoden und Werkzeuge für komplexe Bildverarbeitungssysteme auf Rekonfigurierbaren System-on-Chip-Architekturen / Design, methodologies and tools for complex image processing systems on reconfigurable system-on-chip-architectures

Mühlbauer, Felix January 2011 (has links)
Bildverarbeitungsanwendungen stellen besondere Ansprüche an das ausführende Rechensystem. Einerseits ist eine hohe Rechenleistung erforderlich. Andererseits ist eine hohe Flexibilität von Vorteil, da die Entwicklung tendentiell ein experimenteller und interaktiver Prozess ist. Für neue Anwendungen tendieren Entwickler dazu, eine Rechenarchitektur zu wählen, die sie gut kennen, anstatt eine Architektur einzusetzen, die am besten zur Anwendung passt. Bildverarbeitungsalgorithmen sind inhärent parallel, doch herkömmliche bildverarbeitende eingebettete Systeme basieren meist auf sequentiell arbeitenden Prozessoren. Im Gegensatz zu dieser "Unstimmigkeit" können hocheffiziente Systeme aus einer gezielten Synergie aus Software- und Hardwarekomponenten aufgebaut werden. Die Konstruktion solcher System ist jedoch komplex und viele Lösungen, wie zum Beispiel grobgranulare Architekturen oder anwendungsspezifische Programmiersprachen, sind oft zu akademisch für einen Einsatz in der Wirtschaft. Die vorliegende Arbeit soll ein Beitrag dazu leisten, die Komplexität von Hardware-Software-Systemen zu reduzieren und damit die Entwicklung hochperformanter on-Chip-Systeme im Bereich Bildverarbeitung zu vereinfachen und wirtschaftlicher zu machen. Dabei wurde Wert darauf gelegt, den Aufwand für Einarbeitung, Entwicklung als auch Erweiterungen gering zu halten. Es wurde ein Entwurfsfluss konzipiert und umgesetzt, welcher es dem Softwareentwickler ermöglicht, Berechnungen durch Hardwarekomponenten zu beschleunigen und das zu Grunde liegende eingebettete System komplett zu prototypisieren. Hierbei werden komplexe Bildverarbeitungsanwendungen betrachtet, welche ein Betriebssystem erfordern, wie zum Beispiel verteilte Kamerasensornetzwerke. Die eingesetzte Software basiert auf Linux und der Bildverarbeitungsbibliothek OpenCV. Die Verteilung der Berechnungen auf Software- und Hardwarekomponenten und die daraus resultierende Ablaufplanung und Generierung der Rechenarchitektur erfolgt automatisch. Mittels einer auf der Antwortmengenprogrammierung basierten Entwurfsraumexploration ergeben sich Vorteile bei der Modellierung und Erweiterung. Die Systemsoftware wird mit OpenEmbedded/Bitbake synthetisiert und die erzeugten on-Chip-Architekturen auf FPGAs realisiert. / Image processing applications have special requirements to the executing computational system. On the one hand a high computational power is necessary. On the other hand a high flexibility is an advantage because the development tends to be an experimental and interactive process. For new applications the developer tend to choose a computational architecture which they know well instead of using that one which fits best to the application. Image processing algorithms are inherently parallel while common image processing systems are mostly based on sequentially operating processors. In contrast to this "mismatch", highly efficient systems can be setup of a directed synergy of software and hardware components. However, the construction of such systems is complex and lots of solutions, like gross-grained architectures or application specific programming languages, are often too academic for the usage in commerce. The present work should contribute to reduce the complexity of hardware-software-systems and thus increase the economy of and simplify the development of high-performance on-chip systems in the domain of image processing. In doing so, a value was set on keeping the effort low on making familiar to the topic, on development and also extensions. A design flow was developed and implemented which allows the software developer to accelerate calculations with hardware components and to prototype the whole embedded system. Here complex image processing systems, like distributed camera sensor networks, are examined which need an operating system. The used software is based upon Linux and the image processing library OpenCV. The distribution of the calculations to software and hardware components and the resulting scheduling and generation of architectures is done automatically. The design space exploration is based on answer set programming which involves advantages for modelling in terms of simplicity and extensions. The software is synthesized with the help of OpenEmbedded/Bitbake and the generated on-chip architectures are implemented on FPGAs.
35

A microprocessor performance and reliability simulation framework using the speculative functional-first methodology

Yuan, Yi 13 February 2012 (has links)
With the high complexity of modern day microprocessors and the slow speed of cycle-accurate simulations, architects are often unable to adequately evaluate their designs during the architectural exploration phases of chip design. This thesis presents the design and implementation of the timing partition of the cycle-accurate, microarchitecture-level SFFSim-Bear simulator. SFFSim-Bear is an implementation of the speculative functional-first (SFF) methodology, and utilizes a hybrid software-FPGA platform to accelerate simulation throughput. The timing partition, implemented in FPGA, features throughput-oriented, latency-tolerant designs to cope with the challenges of the hybrid platform. Furthermore, a fault injection framework is added to this implementation that allows designers to study the reliability aspects of their processors. The result is a simulator that is fast, accurate, flexible, and extensible. / text
36

Uma metodologia para estimativa de área baseada em redes de Petri temporizadas para ambientes de sistemas de hardware/software co-design

Portela Machado, Albano January 2004 (has links)
Made available in DSpace on 2014-06-12T15:58:27Z (GMT). No. of bitstreams: 2 arquivo4484_1.pdf: 6966497 bytes, checksum: 24a281b3de8ed514a81a117af5c76238 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2004 / A maioria dos sistemas electrônicos modernos consiste em hardware dedicado e componentes programáveis (chamados componentes de software). Ao longo dos últimos anos, o número de metodologias que aplicaram simultaneamente técnicas de diferentes áreas para desenvolver sistemas mistos de hardware e software tem crescido consideravelmente. Projetos concorrentes de sistemas mistos de hardware/software têm mostrado ser vantajoso quando considerado como um todo ao invés de se considerar entidades independentes. Hoje em dia, o mercado eletrônico demanda sistemas de alto desempenho e de baixo custo. Estes requisitos são essenciais para a competitividade de mercado. Além disso, um curto time-to-market é um fator importante. A demora no lançamento do produto causa sérias reduções no lucro, desde que é mais simples vender um produto quando se tem pouca ou nenhuma competição. Isto significa que facilitando o re-uso de projetos anteriores, uma rápida exploração de projeto, análise/verificação qualitativa em fases iniciais do projeto, prototipação e a redução do tempo requerido para testes, reduzem o tempo global exigido de uma especificação até o produto final. Ao projetar tais sistemas mistos de hardware/software, a análise de alternativas de projeto e a decisão de onde implementar cada parte de sistema, isto é, em hardware ou em software, são tarefas muito importantes. A estimativa de métricas de qualidade permite a exploração do espaço de projeto e pode guiar a decisão de implementação de partes do sistema. Tais métricas são calculadas no nível de sistema, ou seja, sem implementação real. Conseqüentemente, tais estimativas também aceleraram o projeto do sistema e permitem a análise de restrições de projeto, fornecendo uma retroalimetação para decisões de projeto. As redes de Petri são técnicas de especificação formal que permitem uma representação gráfica e matemática. Têm métodos poderosos que permitem aos projetistas realizar análises qualitativa e quantitativa. Redes de Petri Timed, são extensões de redes de Petri nas quais as informações de tempo são expressas por duração (rede com tempo determinístico, política de disparo em três fases) e são associadas às transições. Para uma descrição comportamental de alto nível, o projeto de hardware é dividido em classes de blocos funcionais: caminho de dados e controladores. O caminho de dados consiste em três tipos de componentes RT: unidades de armazenamento (registradores e latches), unidades funcionais (ALUS e comparadores), e unidades de interconexão (multiplexadores e barramentos). As unidades de armazenamento são requeridas para armazenar valores de dados como constantes, variáveis e vetores no comportamento. As unidades funcionais são necessárias para implementar as operações no comportamento. Após todas as variáveis e operações no comportamento terem sido mapeadas às unidades de armazenamento e funcionais, respectivamente, podemos estimar o número de unidades de interconexão, como os barramentos e multiplexadores, os quais são requeridos para interligar as unidades de armazenamento e funcionais. Este trabalho propõe uma abordagem para estimar a área de hardware a partir do número de unidades de armazenamento, funcionais e de interconexão, levando-se em consideração restrições de tempo e dependência de dados, e estende alguns trabalhos anteriores com o objetivo de melhorar a precisão dos métodos de estimativa de área. Isto é, o método proposto considera uma rede de fluxo de dados que captura dependência de dados e calcula a área do caminho de dados a partir do número e tipo dos seus componentes, considerando a relação de dependência temporal
37

A Unifying Interface Abstraction for Accelerated Computing in Sensor Nodes

Iyer, Srikrishna 31 August 2011 (has links)
Hardware-software co-design techniques are very suitable to develop the next generation of sensornet applications, which have high computational demands. By making use of a low power FPGA, the peak computational performance of a sensor node can be improved without significant degradation of the standby power dissipation. In this contribution, we present a methodology and tool to enable hardware/software co-design for sensor node application development. We present the integration of nesC, a sensornet programming language, with GEZEL, an easy-to-use hardware description language. We describe the hardware/software interface at different levels of abstraction: at the level of the design language, at the level of the co-simulator, and in the hardware implementation. We use a layered, uniform approach that is particularly suited to deal with the heterogeneous interfaces typically found on small embedded processors. We illustrate the strengths of our approach by means of a prototype application: the integration of a hardware-accelerated crypto-application in a nesC application. / Master of Science
38

Design Methods for Cryptanalysis

Judge, Lyndon Virginia 24 January 2013 (has links)
Security of cryptographic algorithms relies on the computational difficulty of deriving the secret key using public information. Cryptanalysis, including logical and implementation attacks, plays an important role in allowing the security community to estimate their cost, based on the computational resources of an attacker. Practical implementations of cryptanalytic systems require complex designs that integrate multiple functional components with many parameters. In this thesis, methodologies are proposed to improve the design process of cryptanalytic systems and reduce the cost of design space exploration required for optimization. First, Bluespec, a rule-based HDL, is used to increase the abstraction level of hardware design and support efficient design space exploration. Bluespec is applied to implement a hardware-accelerated logical attack on ECC with optimized modular arithmetic components. The language features of Bluespec support exploration and this is demonstrated by applying Bluespec to investigate the speed area tradeoff resulting from various design parameters and demonstrating performance that is competitive with prior work. This work also proposes a testing environment for use in verifying the implementation attack resistance of secure systems. A modular design approach is used to provide separation between the device being tested and the test script, as well as portability, and openness. This yields an open-source solution that supports implementation attack testing independent of the system platform, implementation details, and type of attack under evaluation. The suitability of the proposed test environment for implementation attack vulnerability analysis is demonstrated by applying the environment to perform an implementation attack on AES. The design of complex cryptanalytic hardware can greatly benefit from better design methodologies and the results presented in this thesis advocate the importance of this aspect. / Master of Science
39

Aplicando verificação de modelos baseada nas teorias do módulo da satisfabilidade para o particionamento de hardware/software em sistemas embarcados

Trindade, Alessandro Bezerra 09 February 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-15T21:23:16Z No. of bitstreams: 1 Dissertacao-Alessandro B Trindade.pdf: 1833454 bytes, checksum: 132beb74daa71e138bbfcdc0dcf5b174 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:00:54Z (GMT) No. of bitstreams: 1 Dissertacao-Alessandro B Trindade.pdf: 1833454 bytes, checksum: 132beb74daa71e138bbfcdc0dcf5b174 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:02:16Z (GMT) No. of bitstreams: 1 Dissertacao-Alessandro B Trindade.pdf: 1833454 bytes, checksum: 132beb74daa71e138bbfcdc0dcf5b174 (MD5) / Made available in DSpace on 2015-06-16T15:02:16Z (GMT). No. of bitstreams: 1 Dissertacao-Alessandro B Trindade.pdf: 1833454 bytes, checksum: 132beb74daa71e138bbfcdc0dcf5b174 (MD5) Previous issue date: 2015-02-09 / Não Informada / When performing hardware/software co-design for embedded systems, does emerge the problem of allocating properly which functions of the system should be implemented in hardware (HW) or in software (SW). This problem is known as HW/SW partitioning and in the last ten years, a significant research effort has been carried out in this area. In this proposed project, we present two new approaches to solve the HW/SW partitioning problem by using SMT-based verification techniques, and comparing the results using the traditional technique of Integer Linear Programming (ILP) and a modern method of optimization by Genetic Algorithm (GA). The goal is to show with experimental results that model checking techniques can be effective, in particular cases, to find the optimal solution of the HW/SW partitioning problem using a state-of-the-art model checker based on Satisfiability Modulo Theories (SMT) solvers, when compared to the traditional techniques. / Quando se realiza um coprojeto de hardware/software para sistemas embarcados, emerge o problema de se decidir qual função do sistema deve ser implementada em hardware (HW) ou em software (SW). Este tipo de problema recebe o nome de particionamento de HW/SW. Na última década, um esforço significante de pesquisa tem sido empregado nesta área. Neste trabalho, são apresentadas duas novas abordagens para resolver o problema de particionamento de HW/SW usando técnicas de verificação formal baseadas nas teorias do módulo da satisfabilidade (SMT). São comparados os resultados obtidos com a tradicional técnica de programação linear inteira (ILP) e com o método moderno de otimização por algoritmo genético (GA). O objetivo é demonstrar, com os resultados empíricos, que as técnicas de verificação de modelos podem ser efetivas, em casos particulares, para encontrar a solução ótima do problema de particionamento de HW/SW usando um verificador de modelos baseado no solucionador SMT, quando comparado com técnicas tradicionais.
40

Contribution des systèmes sur puce basés sur FPGA pour les applications embarquées d’entraînement électrique / Contribution of FPGA-based System-on-Chip controllers for embedded AC drive applications

Bahri, Imen 29 November 2011 (has links)
La conception des systèmes de contrôle embarqués devient de plus en plus complexe en raison des algorithmes utilisés, de l'augmentation des besoins industriels et de la nature des domaines d'applications. Une façon de gérer cette complexité est de concevoir les contrôleurs correspondant en se basant sur des plateformes numériques puissantes et ouvertes. Plus précisément, cette thèse s'intéresse à l'utilisation des plateformes FPGA System-on-Chip (SoC) pour la mise en œuvre des algorithmes d'entraînement électrique pour des applications avioniques. Ces dernières sont caractérisées par des difficultés techniques telles que leur environnement de travail (pression, température élevée) et les exigences de performance (le haut degré d'intégration, la flexibilité). Durant cette thèse, l'auteur a contribué à concevoir et à tester un contrôleur numérique pour un variateur de vitesse synchrone qui doit fonctionner à 200 °C de température ambiante. Il s'agit d'une commande par flux orienté (FOC) pour une Machine Synchrone à Aimants Permanents (MSAP) associée à un capteur de type résolveur. Une méthode de conception et de validation a été proposée et testée en utilisant une carte FPGA ProAsicPlus de la société Actel/Microsemi. L'impact de la température sur la fréquence de fonctionnement a également été analysé. Un état de l'art des technologies basées sur les SoC sur FPGA a été également présenté. Une description détaillée des plateformes numériques récentes et les contraintes en lien avec les applications embarquées a été également fourni. Ainsi, l'intérêt d'une approche basée sur SoC pour des applications d'entrainements électriques a été démontré. D'un autre coté et pour profiter pleinement des avantages offertes par les SoC, une méthodologie de Co-conception matériel-logiciel (hardware-software (HW-SW)) pour le contrôle d'entraînement électrique a été proposée. Cette méthode couvre l'ensemble des étapes de développement de l'application de contrôle à partir des spécifications jusqu'à la validation expérimentale. Une des principales étapes de cette méthode est le partitionnement HW-SW. Le but est de trouver une combinaison optimale entre les modules à mettre en œuvre dans la partie logiciel et celles qui doivent être mis en œuvre dans la partie matériel. Ce problème d'optimisation multi-objectif a été réalisé en utilisant l'algorithme de génétique, Non-Dominated Sorting Genetic Algorithm (NSGA-II). Ainsi, un Front de Pareto des solutions optimales peut être déduit. L'illustration de la méthodologie proposée a été effectuée en se basant sur l'exemple du régulateur de vitesse sans capteur utilisant le filtre de Kalman étendu (EKF). Le choix de cet exemple correspond à une tendance majeure dans le domaine des contrôleurs embraqués pour entrainements électriques. Par ailleurs, la gestion de l'architecture du contrôleur embarqué basée sur une approche SoC a été effectuée en utilisant un système d'exploitation temps réel. Afin d'accélérer les services de ce système d'exploitation, une unité temps réel a été développée en VHDL et associée au système d'exploitation. Il s'agit de placer les services d'ordonnanceur et des processus de communication du système d'exploitation logiciel au matériel. Ceci a permis une accélération significative du traitement. La validation expérimentale d'un contrôleur du courant a été effectuée en utilisant un banc de test du laboratoire. Les résultats obtenus prouvent l'intérêt de l'approche proposée. / Designing embedded control systems becomes increasingly complex due to the growing of algorithm complexity, the rising of industrials requirements and the nature of application domains. One way to handle with this complexity is to design the corresponding controllers on performing powerful and open digital platforms. More specifically, this PhD deals with the use of FPGA System-on-Chip (SoC) platforms for the implementation of complex AC drive controllers for avionic applications. These latters are characterized by stringent technical issues such as environment conditions (pressure, high temperature) and high performance requirements (high integration, flexibility and efficiency). During this thesis, the author has contributed to design and to test a digital controller for a high temperature synchronous drive that must operate at 200°C ambient. It consists on the Flux Oriented Controller (FOC) for a Permanent Magnet Synchronous Machine (PMSM) associated with a Resolver sensor. A design and validation method has been proposed and tested using a FPGA ProAsicPlus board from Actel-Microsemi Company. The impact of the temperature on the operating frequency has been also analyzed. A state of the art FPGA SoC technology has been also presented. A detailed description of the recent digital platforms and constraints in link with embedded applications was investigated. Thus, the interest of a SoC-based approach for AC drives applications was also established. Additionally and to have full advantages of a SoC based approach, an appropriate HW-SW Co-design methodology for electrical AC drive has been proposed. This method covers the whole development steps of the control application from the specifications to the final experimental validation. One of the main important steps of this method is the HW-SW partitioning. The goal is to find an optimal combination between modules to be implemented in software and those to be implemented in hardware. This multi-objective optimization problem was performed with the Non-Dominated Sorting Genetic Algorithm (NSGA-II). Thus, the Pareto-Front of optimal solution can be deduced. The illustration of the proposed Co-design methodology was made based on the sensorless speed controller using the Extended Kalman Filter (EKF). The choice of this benchmark corresponds to a major trend in embedded control of AC drives. Besides, the management of SoC-based architecture of the embedded controller was allowed using an efficient Real-Time Operating System (RTOS). To accelerate the services of this operating system, a Real-Time Unit (RTU) was developed in VHDL and associated to the RTOS. It consists in hardware operating system that moves the scheduling and communication process from software RTOS to hardware. Thus, a significant acceleration has been achieved. The experimentation tests based on digital current controller were also carried out using a laboratory set-up. The obtained results prove the interest of the proposed approach.

Page generated in 0.0895 seconds