• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 16
  • 10
  • 10
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 168
  • 168
  • 68
  • 52
  • 52
  • 33
  • 33
  • 33
  • 26
  • 25
  • 23
  • 21
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

REDUNDANT FIRMWARE TEST SETUP IN SIMULATION AND HARDWARE: A FEASIBILITY STUDY

Ekström, Per, Eriksson, Elisabeth January 2018 (has links)
A reliable embedded real-time system has many requirements to fulfil. It must meet target deadlines in a number of situations, most of them in a situation that puts heavy stress on the system. To meet these demands, numerous tests have been created which test the hardware for any possible errors the developers might think of, in order to maximise system reliability and stability. These tests will take a lot of time to execute, and as system complexity grows, more tests are introduced leading to even longer testing times. In this thesis, a method to reduce the testing time of the software and, to a lesser extent, the hardware is examined. By using the full system simulator Simics, an existing industry system from ABB was integrated and tests were performed. A proof of concept test suite for automatic redundancy tests was also implemented. By looking at the test results, it was concluded that the method shows promise. However, problems with the average latency and performance troubles with Simics shows that more work must be put into this research before the system can be run at full speed.
112

Development and Implementation of a Mass Balancing System for CubeSat Attitude Hardware-in-the-Loop Simulations

Ledo López, Guillermo January 2019 (has links)
Spacecraft simulator platforms can simulate the microgravity environment of space on Earth, for the purposes of testing the Attitude and Orbit Control Subsystem of satellites. In order to do this, the satellite is mounted on a bench and the combined center of mass of this assembly is controlled by a series of moving masses. The objective is to bring this center or mass as close as possible to the center of rotation, since solids in microgravity always rotate around their own center of mass. The air-bearing platform located, designed and built at the NanoSat Laboratory of the Kiruna Space Campus of the Luleå University of Technology makes use of four balancing masses, which are displaced by that number of linear actuators. This document explains the process followed to design an algorithm for the estimation of the center of mass and the subsequent calculation of the required positions of the balancing masses to bring this center of mass back to the center of rotation. First, the equations of rotational motion of the bench were found through two formulations: quaternions and Euler-Lagrange. Secondly, these equations were used to obtain an estimation of the center of mass via Batch Least-Squares. Thirdly, the equations of the center of mass of a system of point masses were used to find the proper positions of the balancing masses. Finally, the complete algorithm was tested with Hardware-in-the-Loop simulations before testing it in the real hardware of the platform. The developed algorithm was not capable of estimating the center of mass with sufficient accuracy, which invalidated the obtained actuator positions, and thus was not able to compensate the offset of the center of mass. Recommended lines of development are provided to assist on the continuation of this work.
113

Real-Time Simulation of a Smart Inverter

January 2017 (has links)
abstract: With the increasing penetration of Photovoltaic inverters, there is a necessity for recent PV inverters to have smart grid support features for increased power system reliability and security. The grid support features include voltage support, active and reactive power control. These support features mean that inverters should have bidirectional power and communication capabilities. The inverter should be able to communicate with the grid utility and other inverter modules. This thesis studies the real time simulation of smart inverters using PLECS Real Time Box. The real time simulation is performed as a Controller Hardware in the Loop (CHIL) real time simulation. In this thesis, the power stage of the smart inverter is emulated in the PLECS Real Time Box and the controller stage of the inverter is programmed in the Digital Signal Processor (DSP) connected to the real time box. The power stage emulated in the real time box and the controller implemented in the DSP form a closed loop smart inverter. This smart inverter, with power stage and controller together, is then connected to an OPAL-RT simulator which emulates the power distribution system of the Arizona State University Poly campus. The smart inverter then sends and receives commands to supply power and support the grid. The results of the smart inverter with the PLECS Real time box and the smart inverter connected to an emulated distribution system are discussed under various conditions based on the commands received by the smart inverter. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
114

Um ambiente de monitoramento para sistemas multi-robôs com cossimulação federada e Hardware-in-the-Loop

Costa, Luís Feliphe Silva 15 January 2016 (has links)
Submitted by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-16T14:50:10Z No. of bitstreams: 1 arquivototal.pdf: 3127973 bytes, checksum: 952cbde0e6bee1a7bb48959d05e22840 (MD5) / Made available in DSpace on 2017-08-16T14:50:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3127973 bytes, checksum: 952cbde0e6bee1a7bb48959d05e22840 (MD5) Previous issue date: 2016-01-15 / Simulations often are used in development systems do predict how systems will work on final environment. Many kinds of simulations and techniques are available, one of then is Hardware-in-the-Loop Simulation that provides a more realistic environment by using real devices on simulations. In this work this technique is used with co-simulation between Ptolemy and Stage to provide an multi-robot environment and embedded systems design. It can help to find hardware and software errors during development. High Level Architecture, an IEEE pattern to interoperability between simulators is used to manage time and data that is shared on co-simulation. This work also studies synchronization aspects and uses real robots on simulations to validate proposed environment. / Simulações frequentemente são utilizadas no desenvolvimento de sistemas para prever erros antes de sua implantação no ambiente final. Há uma diversidade entre os tipos e técnicas de simulações, entre elas a de hardware-in-the-loop. Nela dispositivos de hardware são adicionados a simulação para aumentar a realidade dos resultados. Neste trabalho utilizamos esta técnica em conjunto com a cossimulação dos simuladores Stage e Ptolemy para prover um ambiente de simulação multi-robôs e de sistemas embarcados. Este ambiente pode ajudar na detecção de falhas de hardware e de software. O ambiente é integrado por meio do padrão IEEE 1516, a Arquitetura de Alto Nível, que gerencia o tempo de simulação e dados compartilhados durante a simulação. No trabalho são realizadas simulações para estudo do ambiente de sincronização, visto que erros neste sentido podem comprometer os resultados das simulações. Há ainda a utilização de robôs reais para validar o ambiente final desenvolvido.
115

Verification of hardware-in-the-loop as a valid testing method for suspension development

Misselhorn, Werner Ekhard 28 July 2005 (has links)
A need for a cost effective, versatile and easy to use suspension component testing method has arisen, following the development of a four-state hydro-pneumatic semi-active spring-damper system. A method known as hardware-in-the-loop (HiL) was investigated, in particular its use and compatibility with tests involving physical systems – previously HiL was used predominantly for Electronic Control Unit (ECU) testing. The suitability of HiL in the development of advanced suspension systems and their control systems, during which various vehicle models can be used, was determined. A first step in vehicle suspension design is estimating a desired spring and damper characteristic, and verifying that characteristic using software simulation. The models used during this step are usually low-order, simple models, which hampers quick development progress. To predict vehicle response before vehicle prototype completion, many researchers have attempted to use complex and advanced damper models to simulate the vehicle’s dynamics, but these models all suffer from some drawback – it is either based on empirical data, giving no indication of the physical parameters of the design sought; it may be overly complex, having many parameters and thus rendering software impractical; or it may be quick but based on the premise that there is no hysteresis in the damping character. It can be seen that an obvious answer exists – use a physical commercially available or prototype damper in the software simulation instead of the mathematical model. In this way the suspension deflection, i.e. the true motion of the damper is used as excitation, and the true damper force is measured using a hydraulic actuator and load cell. The vehicle mass motions are simulated in a software environment. This is basically what HiL simulation does. The HiL method was verified by comparing HiL simulations and tests to globally accepted testing methods, employing widely-used vehicle models: linear single-degree-of-freedom (SDOF) and two-degrees-of-freedom (2DOF) or quarter-car models were used. The HiL method was also compared to a non-linear physical system to verify that the method holds for real vehicle suspension geometries. This meant that HiL had to perform adequately at both ends of the suspension-testing spectrum – base software and real system simulation. The comparison of the HiL and software/real system simulation was done using the “Error Coefficient of Variance” (ECOV) between the compared signals; this quantitative measure proved very sensitive and performed dubiously in the presence of signal offsets, phase lags and scaling errors, but remains a tangible, measurable parameter with which to compare signals. Visual confirmation was also obtained to back the ECOV values. It was found that even using a relatively low-force actuator, the HiL simulation results followed the software/real system responses well. Phase lags and DC offsets in the HiL simulation’s measured signals (as well as the real systems responses) has an adverse effect on the performance of the HiL simulation. Special attention must thus be paid to the zeroing of equipment and the amount/type of filters in the system, as these affect the HiL results dramatically. In all, HiL was proven to be a versatile and easy to use alternative to conventional mass-based suspension testing. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
116

Simulation of Attitude and Orbit Control for APEX CubeSat

de Graaf, Niels January 2020 (has links)
CubeSats are becoming a game changer in the space industry. Appearing first for univer-sity mission, its popularity is increasing for commercial use and for deep space missionssuch as the on HERA mission that will orbit in 2026 around an asteroid as part of aplanetary defence mission. Standardisation and industrial collaboration is key to a fastdevelopment, assuring the product quality and lower development expenditures.In this study the focus is set elaborating a low cost demonstrator platform to be usedfor developing and testing onboard software on physical hardware: a Hardware-Softwaretesting facility. The purpose of such a platform is to create an interactive and accessibleenvironment for developing on board software. The application chosen to be elaboratedon this platform is a module the subsystem of attitude and orbit control of the satelliteorbiting around asteroid.In order to create this platform the simulation of the asteroid environment of theCubeSat has been made using open source software libraries. During this task the per-formance of open source libraries has been compared to commercial alternatives. In thedevelopment of simulation different orbit perturbations have been studied by modellingthe asteroid as a cube or spheroid and additionally the effect of a third perturbing bodyand radiation pressure.As part of this project two microcontroller have been set up communicating using acommunication bus and communication protocols used for space applications to simulatehow the attitude and orbit control is commanded inside the CubeSat.
117

Emulador de turbina eólica : uma ferramenta para o estudo experimental e computacional /

Oliveira, José Rodrigo de. January 2019 (has links)
Orientador: André Luiz Andreoli / Resumo: As fontes renováveis de energia apresentam-se como solução para problemas relacionados ao aumento da demanda por energia elétrica e crescimento dos níveis de emissão de gás carbônico, uma vez que são não poluentes, limpas e abundantes. Aproveitamentos eólicos se mostram como uma das mais promissoras fontes de energia renovável, e por essa razão as pesquisas envolvendo este tipo de aproveitamento têm despertado grande interesse na comunidade científica. Este trabalho apresenta o desenvolvimento de um emulador de turbina eólica (ETE), uma ferramenta de apoio às investigações experimentais capaz de reproduzir o comportamento mecânico dinâmico de uma turbina eólica através de uma malha de controle digital em configuração de hardware-in-the-loop atuando sobre um acionamento eletrônico de uma máquina de indução Operando como fonte de força motriz, o ETE torna mais fácil a avaliação dinâmica de geradores e seus sistemas de controle associados voltados às aplicações envolvendo energia eólica. A pesquisa apresenta uma revisão bibliográfica sobre o estado da arte, a modelagem e a implementação experimental de um emulador de turbina eólica utilizando um motor de indução trifásico (MIT) acionado por um inversor de frequência. Para isso, é implementado um controle em malha fechada de conjugado e velocidade. Este controle faz com que o acionamento eletromecânico representado pelo MIT e inversor de frequência apresente em seu eixo o comportamento de uma turbina eólica conforme os parâmetros... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
118

Mixed-Reality-in-the-Loop Simulation zur Schulung technischer Fachkräfte im Maschinen- und Anlagenbau

Hönig, Jana, Schnierle, Marc, Wehnert, Camilla, Littfinski, Daniel, Scheifele, Christian, Pfeifer, Denis, Münster, Carlos, Roth, Armin, Franz, Julia, Röck, Sascha, Verl, Alexander 27 January 2022 (has links)
Dieser Beitrag stellt die Mixed-Reality-in-the-Loop Simulation (MRiLS) zur Schulung technischer Fachkräfte im Maschinen- und Anlagenbau vor. Die MRiLS koppelt die aus dem Engineering bereits vorhandenen Modelle der Hardware-in-the-Loop Simulation (HiLS) mit Visualisierungs- und Interaktionsmethoden der Mixed Reality (MR) und integriert dadurch den Nutzenden und dessen Verhalten sowie die reale Umgebung vollständig in den Simulationskreislauf. Der Beitrag thematisiert neben der notwendigen Middleware zur Kopplung der HiLS mit der MR-Umgebung auch die Steuerungsbelastung durch Multiuser-Zugriffe. Die Funktionsfähigkeit des vorgestellten Konzepts wird anhand eines ausgewählten beispielhaften Automatisierungssystems belegt. Für das Automatisierungssystem wird der Aufbau der MRiLS sowie das Konzept für den Ablauf einer Schulung mittels MRiLS vorgestellt.
119

Simulation model refinement for Steer and Brake by Wire System : From Simulation Model to Hardware in the Loop

Risi, Jeff, Veera, Chandan January 2023 (has links)
Simulation tools have progressed largely and in modern times they are commonly usedby engineers to design and simulate machines or part of machines before building and deploying them in the field. The field of Hardware-in-the-loop (HIL) is gaining significant interest among companies as they strive to enhance product safety and reliability simul-taneously reducing testing costs and accelerated development speed. This study presents the Real Time simulation improvements effectuated to the Steer and Brake by wire system on an underground face drill rig. These improvements in the model are validated with a comparison between simulated environment and real test data from the machine using a cosimulation between Matlab&Simulink with AMESim. At the end, this improved model is prepared to be compatible with an Hardware-in-the-loop application that requires an adequate computational time.
120

Advancing Millimeter-Wave Vehicular Radar Test Targets for Automatic Emergency Braking (AEB) Sensor Evaluation

Belgiovane, Domenic John, Jr. January 2017 (has links)
No description available.

Page generated in 0.039 seconds