• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rasterkraftmikroskopische Untersuchungen an Haftklebstoffen

Döring, Andreas, January 2001 (has links)
Ulm, Univ., Diss., 2001.
2

Resin collection and use in stingless bees / Wie stachellose Bienen Pflanzenharze sammeln und nutzen

Leonhardt, Sara Diana January 2010 (has links) (PDF)
Harz ist ein klebriges Pflanzenprodukt mit einem oft intensiven aromatischen Geruch. Es wird von Bäumen produziert, um Wunden zu verschließen und schädliche Besucher abzuwehren. Einige Insektenarten haben jedoch die erstaunliche Fähigkeit entwickelt, mit der klebrigen Substanz umzugehen und sie sich gar zu Nutzen zu machen. So verwenden Bienen Harz beispielsweise zum Nestbau und zur Verteidigung ihrer Kolonien. Während allgemein bekannt ist, dass Bienen Pollen und Nektar sammeln, wird der Tatsache, dass sie auch Harz sammlen, allerdings sehr viel weniger Beachtung geschenkt. Ziel meiner Dissertation war es daher, herauszufinden, warum, wie und wo stachellose Bienen in Borneo (sieben untersuchte Bienenarten), Australien (acht Arten) und Costa Rica (27 Arten) Pflanzenharze sammeln und verwerten. Diese Arbeit behandelt somit die enge Beziehung zwischen einer eusozialen Insektengattung und einem chemisch und physiologisch hoch komplexen Pflanzenprodukt, das Bienen nicht nur als Nestmaterial und zur Verteidigung dient, sondern auch eine wesentliche Bedeutung für deren chemische Diversität hat. Stachellose Bienen verhalten sich hochgradig opportunistisch, wenn sie Harz sammeln, d.h. verschiedene Bienenarten sammeln Harz von denselben Baumarten, wobei sie nahezu jede verfügbare Harzquelle nutzen. Dabei finden und erkennen sie Harzquellen anhand einiger charakteristischer Mono- und Sesquiterpene, nutzen jedoch nicht das gesamte Harz-Bouquet. Die Menge an eingetragenem Harz unterscheidet sich zwischen verschiedenen Bienenarten und kolonien und varriert mit verschiedenen Umweltbedingungen. Insbesondere eine Bedrohung durch Fressfeinde (z. B. Ameisen) führt zu einer massiven Steigerung des Harzeintrages; eine manuelle Zerstörung des Nesteinganges hat dagegen relativ wenig Einfluss. Das eingetragene Harz wird zum Nestbau und zur Verteidigung gegen Fressfeinde und Mikroben genutzt. Darüber hinaus dient es als Quelle für Terpene, die von den Bienen in ihre chemischen Oberflächenprofile eingebaut werden (kutikuläre Terpene). Dabei übertragen sie nur einen Bruchteil (8 %) der gewaltigen Menge (>> 1000) an Terpenen, die man im Harz von Bäumen findet, auf ihre Oberfläche. Die übertragenen Terpene bleiben in ihrer Struktur unverändert, allerdings unterscheiden sich die Bienenarten in der Zusammensetzung der Terpenprofile auf ihrer Oberfläche, obwohl alle untersuchten Arten Harz von denselben Bäumen sammeln. Die unterschiedlichen Terpenprofile sowie die Tatsache, dass nur wenige Terpene aus dem Harz aufgenommen werden, deuten auf einen artspezifischen und bisher unbekannten Filterungsmechanismus bei stachellosen Bienen hin. Auch übersteigt durch die Aufnahme von Terpenen die chemische Diversität der Oberflächenprofile von stachellosen Bienen die zahlreicher anderer Hymenopteren. Da Bienen die Terpene aus dem Harz nur „filtern“, sie dabei aber nicht verändern, sind sämtliche Bienenarten aus Borneo, Australien und Costa den charakteristischen Harzprofilen von Bäumen aus ihren Ursprungsgebieten chemisch sehr ähnlich. Da in jeder tropischen Region andere Baumarten vorkommen, varriert die chemische Zusammensetzung der vorkommenden Harze und damit der kutikulären Terpene von dort vorkommenden Bienen. Die meisten Bienenarten mit kutikulären Terpenen findet man in Borneo, wo nahezu 100 % der untersuchten Arten aus Baumharzen gewonnene Terpene in ihre chemischen Profilen einbauen. Im Gegensatz dazu sind es in Costa Rica nur 40 % der untersuchten Arten. Auch sammeln in Borneo gelegentlich 9 von 10 Arbeiterinnen einer Tetragonilla collina Kolonie Harz, wohingegen in Australien maximal 10 % und in Costa Rica maximal 40 % der Arbeiterinnen einer Kolonie Harz sammeln. Das Vorherrschen von Harz und aus Harz gewonnenen Terpenen in der chemischen Ökologie von Bienen auf Borneo spiegelt das Vorherrschen einer bestimmten südostasiatischen Baumfamilie wieder: der Dipterocarpaceen, deren Holz ungewöhnlich harzig ist. Ein solch enger Zusammenhang zwischen der Chemie von Bienen und der von Baumharzen verdeutlicht die enge Beziehung zwischen stachellosen Bienen und den Bäumen in ihrem Habitat. Die kutikulären Terpene schützen ihre Träger vor Angreifern (z.B. Ameisen) und Mikrobenbefall. Dabei variiert eine bestimmte Gruppe – Sesquiterpene – am meisten zwischen den Arten. Diese Terpengruppe manipuliert die natürlichweise auftretende zwischen-artliche Aggression, indem sie letztere bei jenen Arten verringert, die selbst keine Sesquiterpene in ihrem Profil haben. Aggressionsminderung durch chemische Komponenten, welche aus der Umwelt aufgenommen werden, stellt somit einen bisher unbekannten Mechanismus dar, um Toleranz zwischen sonst aggressiven Arten zu erreichen. Eine derarte Herabsetzung von aggressiven Verhalten bei stachellosen Bienen kann darüber hinaus ein entscheidender Faktor für das Entstehen sogenannter Nestaggregationen sein. Dabei nisten Kolonien von Bienenarten mit und Bienenarten ohne Sesquiterpene in ihrem chemischen Profil in unmittelbarer Nachbarschaft, ohne gegeneinander aggressiv zu sein. Im Hinblick auf die zahlreichen Funktionen, die Harze und/oder aus dem Harz gewonnene Substanzen für stachellose Bienen haben, stellt Harz zweifelsohne eine bedeutende Ressource in der Welt der Bienen dar – eine Ressource, die einen direkten Einfluss auf deren chemische Ökologie, Verteidigungsmechanismen und zwischen-artliche Kommunikation ausübt. Wie genau die Bienen ihre artspezifischen Terpenprofile erzeugen, insbesondere, wie es ihnen gelingt, dabei ganze Terpengruppen auszuschließen, muss in zukünftigen Studien genauer untersucht werden. Auch stellt sich die Frage, wie wichtig eine hohe Diversität an Harzquellen und damit Baumarten für die Bienen ist! Es ist durchaus möglich, dass neben einer Vielfalt an Blütenpflanzenarten auch der „Harzreichtum“ für das Wohlergehen der Bienen eine entscheidende Rolle spielt. / Resin, a sticky sap emitting terpenoids and other volatiles, is produced by various plant species to seal wounds and protect themselves against herbivores and microbes. Among several other insects, bees have evolved the surprising ability to handle the repellent plant sap and use it to construct and defend their nests. Whereas the collection of pollen and nectar has been intensively studied in bees, resin collection has received only little attention. The aim of this dissertation was to better understand how the physiological and chemical properties of resin and resin-derived compounds (terpenes) affect the ecology of stingless bees. I therefore asked why, where and how stingless bees of Borneo (seven study-species), Australia (eight) and Costa Rica (27) collect and process plant resins, addressing the importance of a largely neglected resource not only for building and defensive properties, but also for the bees’ chemical diversity. Stingless bees are highly opportunistic resin foragers with all species collecting resin from a similar set of tree species. They locate and/or recognize resin sources on the basis of several volatile mono- and sesquiterpenes. I found that different bee species and even colonies significantly varied in the amount of resin collected. Predator attack (e.g., by ants) had the strongest affect on resin intake, whereas manual nest destruction only slightly increased the number of resin foragers. Resin is used to build, maintain and defend nests, but also as source for chemical compounds (terpenes) which stingless bees include in their surface profiles (chemical profiles). They directly transfer resin-derived compounds to their body surfaces (cuticular terpenes), but only include a subset (8 %) of the large number (>> 1000) of terpenes found in tree resins. This phenomenon can only be explained by a hitherto unknown ability to filter environmentally derived compounds which results in species-specific terpene profiles and thus in an increased chemical heterogeneity among species. Moreover, due to the addition of resin-derived substances the diversity of compounds on the bees’ body surfaces by far exceeds the chemical diversity of profiles in other hymenopterans. Because stingless bees filter but do not modify resin-derived compounds, species from Borneo, Australia and Costa Rica all resemble the characteristic resin of typical trees in their regions of origin. This chemical similarity reveals a strong correlation between the diversity of tree resins and the diversity of cuticular terpenes among stingless bees in a given habitat. Because different tree species are found in different tropical regions, the chemical composition of tree resins varies between tropical regions as does the composition of cuticular terpenes in bee species from these regions. Cuticular terpenes are however most common among stingless from Borneo, with 100 % of species studied having resin-derived terpenes in their chemical profiles. They are least common in Costa Rica, with only 40 % of species having terpenes. Likewise, resin collection was found to be highest in Tetragonilla collina colonies of Borneo where occasionally up to 90 % of foragers collected resin. By contrast, resin collection was only performed by 10 % of foragers of a given colony in Australia and by a maximum of 40 % in Costa Rica. The dominance of resin and resin-derived compounds in the chemical ecology of bees from Borneo may mirror the dominance of a particular Southeast Asian tree family: the highly resinous dipterocarps. Such a correlation between the chemistry of bees and the chemistry of tree resins therefore underlines the close relationship between stingless bees and the trees of their habitat. Cuticular terpenes are assumed to protect bees against predators and/or microbes. Sesquiterpenes, a specific group of terpenes, most vary between species and impair inter-specific aggression by reducing aggressive behavior in species without sesquiterpenes, thereby providing a novel mechanism to achieve interspecific tolerance among insects. Reduced interspecific aggression may also be an important factor enabling the non-aggressive aggregation of nests from stingless bee colonies of up to four different species, because such aggregations frequently comprise both species with and species without sesquiterpenes. Given its various functions, resin represents a highly important resource for stingless bees which directly affects their chemical ecology, defensive properties and inter-specific communication. It remains to be investigated how the bees influence the resin-derived terpene profiles on their body surface and in their nests, particularly how they manage to exclude entire groups of terpenes. Whether bees actually need a high diversity of different resin sources and therefore tree species to maintain the homeostasis of their colonies or whether they would do equally well with a limited amount of resin sources available, should also be addressed in future studies. Answers to this question will directly impair bee and forest management in (sub)tropical regions.
3

Das fossile Harz von Schliersee (Bayerische Alpen) und seine Mikroinklusen

Schmidt, Alexander. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Jena.
4

Polymere Netzwerke mit biobasierten Bausteinen

Voigt, Pauline 08 February 2023 (has links)
Der Entschluss der Europäischen Kommission zur Klimaneutralität bis 2050 führte zur Einführung des Emissionshandels. Demnach muss die Emission von Treibhausgasen mit dem Erwerb von Zertifikaten kompensiert werden, wobei mit sinkenden maximalen Abgabemengen der Preis entsprechend steigt. Erst dadurch wird es für die Industrie profitabel, in nachhaltige Produktionsanlagen zu investieren oder auf biobasierte Rohstoffe zurück zu greifen. Mit dem Entschluss zur Nachhaltigkeit müssen alternative Rohstoffquellen genutzt werden und dementsprechend auch in der chemischen Industrie neue Verfahren der Verarbeitung entwickelt werden. Das bedeutet neue Gewinnungs- und Trennverfahren und darüber hinaus erneute Materialentwicklung. Ziel dieser Arbeit war es nachhaltige Alternativen für eine gut untersuchtes petrobasiertes Methacrylat-Harzsystem für den Einsatz in Chemiemörteln zu finden und deren Netzwerkstrukturen zu untersuchen. Bisher wurde die Untersuchung der Netzwerkbildung von radikalisch härtenden Methacrylatharzen in anderen Arbeiten vernachlässigt, was auf die schwierige Kinetik der Aushärtungsreaktion von Duroplasten zurückzuführen ist. Ein tieferes Verständnis der Härtungsreaktion war von entscheidender Bedeutung für eine effektive Anpassung der Zusammensetzung unter Einbeziehung biobasierter Verbindungen. Diese Arbeit bestand aus zwei Hauptteilen, darunter die systematische Untersuchung eines Modellnetzwerks mittels statischer Versuchsplanung, mit gleichzeitiger Verfolgung der radikalischen Aushärtungsreaktion und Charakterisierung des ausgehärteten Harzes. Zum anderen wurde die Synthese und Anwendung von biobasierten Strukturen im Harzsystem betrachtet. Es wurde ein homogenes Modellharzsystem entwickelt, mit dem die Analysemethoden etabliert wurden. Die Reaktionsverfolgung erfolgte mit Hilfe gängiger Methoden wie der Nahinfrarotspektroskopie, isothermen Differenzkalorimetrie, und rheologischer Untersuchungen. Die Netzwerkstruktur des ausgehärteten Harzes wurde durch Quellungsexperimente und dynamisch-mechanisch thermische Analysen untersucht. Ein entscheidender Parameter war die Zusammensetzung des Harzgemisches und das Verhältnis von Harzgrundkörper, Vernetzer und Reaktivverdünner zueinander. Dies wurde durch Anwendung eines statistischen Versuchsplans in Form eines Mischungsdesign (mit Begrenzungen) untersucht, wobei unterschiedliche Mischungen im Vergleich mit dem etablierten Referenzsystem bewertet wurden. Strukturelle Veränderungen durch den Einsatz biobasierter Verbindungen sollten mit dem Modellharzsystem verglichen werden, um deren spezifische Einflüsse zu verstehen. Die biobasierten Monomere sind kommerziell wenig verfügbar, daher wurden diese als neuartige Verbindungen im Rahmen der Arbeit zunächst synthetisiert. Es galt ein Spektrum von geeigneten Diolverbindungen zu funktionalisieren, um diese in Methacrylatharzen zu testen. Dabei wurden zucker- und terpenbasierte Strukturen, sowie auch Alkandiole als biobasierte Drop-in Verbindungen eingesetzt. Mit Analyseverfahren zur Reaktionsverfolgung und Materialcharakterisierungsmethoden wurden die entsprechenden Harzsysteme umfassend charakterisiert. Damit wurde ein tiefer Einblick in die ablaufenden Prozesse während der Reaktionen, des Umsatzes sowie der Materialparameter gewonnen. Schlussendlich wird in der vorliegenden Arbeit gezeigt, dass Harzsysteme mit biobasierten Komponenten eine echte Alternative zu rein petrochemischen Produkten darstellen und damit der ökologische Fußabdruck des Bausektors an dieser Stelle verringert werden kann.:Danksagung I Inhaltsverzeichnis III Abkürzungsverzeichnis VI 1 Einleitung und Motivation 1 2 Theoretische Grundlagen 7 2.1 Polymere Netzwerke 7 2.1.1 Einteilung von polymeren Netzwerken 7 2.1.2 Reaktionsmechanismen 8 2.2 Reaktionsharze 10 2.2.1 Radikalische Polymerisation 11 2.2.2 Initiatorsysteme 12 2.2.3 Inhibitoren und Stabilisatoren 14 2.3 Reaktionskinetik 14 2.4 Biobasierte Monomere 18 2.4.1 Nachhaltige Reaktivverdünner 19 2.4.2 Biobasierte Harze 20 2.4.3 Biobasierte Verbindungen zur Funktionalisierung 25 2.5 Analytische Methoden 26 2.5.1 Methoden zur Reaktionsverfolgung 27 2.5.1.1 Umsatzverfolgung mit Nah-Infrarotspektroskopie (NIR) 27 2.5.1.2 Rheologische Untersuchungen 28 2.5.1.3 Dynamische Differenzkalorimetrie (DSC) 30 2.5.2 Charakterisierung der polymeren Netzwerke 31 2.5.2.1 DSC 32 2.5.2.2 Dynamisch-mechanisch thermische Analyse (DMTA) 32 2.5.2.3 Quellversuche 34 2.6 Statistisches Versuchsdesign 34 3 Zielstellung 42 4 Ergebnisse und Diskussion 43 4.1 Modellharzsystem 43 4.1.1 Methacrylatbasierte Harzmischung 44 4.1.1.1 Entwicklung einer Harzmischung und reproduzierbarer Analysen 45 4.1.1.2 Das 2K-Modellharzsystem als Referenz 52 4.1.2 Reaktionsverfolgung und Charakterisierung 53 4.1.2.1 NIR 53 4.1.2.2 DSC 55 4.1.2.3 Rheologie 57 4.1.2.4 DMTA 57 4.1.2.5 Quellversuche 58 4.2 Auswertung des statistischen Versuchsdesigns 60 4.2.1 Monitoring der Härtungsreaktion 63 4.2.1.1 Bewertung des Regressionsmodells 63 4.2.1.2 Betrachtung der Reaktionszeit 65 4.2.1.3 Einfluss der Harzvariation auf den Reaktionsumsatz 68 4.2.2 Materialeigenschaften der gehärteten Harzproben 70 4.2.2.1 Quellungsgrade der Harzvariationen 71 4.2.2.2 Speichermodul 73 4.2.2.3 Betrachtung der Glasübergangstemperatur 75 4.2.3 Schlussfolgerungen zum statistischen Versuchsdesign 77 4.3 Harzmischungen mit biobasierten Strukturen 79 4.3.1 Synthesestrategien zur Darstellung biobasierter Monomere 79 4.3.1.1 Biobasierte Vernetzerstrukturen 80 4.3.1.2 Biobasierte Harzstrukturen 81 4.3.2 Vergleich der Reaktions- und Materialeigenschaften zum 2K Modellsystem 84 4.3.2.1 Eigenschaften der Harzsysteme mit biobasierten Vernetzern 85 4.3.2.2 Eigenschaften der Harzsysteme mit biobasierten Harzgrundkörpern 91 5 Zusammenfassung und Ausblick 100 6 Experimenteller Teil 108 6.1 Methoden 108 6.1.1 DMTA 108 6.1.2 DSC 108 6.1.3 NIR 108 6.1.4 NMR 109 6.1.5 Rheologie 109 6.1.6 Quellversuche 109 6.2 Materialien 110 6.3 Monomersynthese aus biobasierten Strukturen 112 6.3.1 Vernetzer 112 6.3.1.1 1,5-Pentandioldimethacrylat 112 6.3.1.2 1,4-Pentandioldimethacrylat 113 6.3.1.3 1,3- Propandioldimethacrylat 114 6.3.2 Harze 115 6.3.2.1 GalX-Me-DMA 115 6.3.2.2 GalX-DMA 116 6.3.2.3 Betu-DMA 118 6.4 2K-Harzsystem 119 6.4.1 Komponente A 119 6.4.2 Komponente B 120 6.4.3 Härtung des 2K-Harzsystems 120 6.5 Zusammensetzungen der Harzvariationen 121 6.5.1 DOE Harzmischungen 121 6.5.2 Harzmischungen mit biobasierten Monomeren 121 6.5.2.1 Mit biobasierten Vernetzern 122 6.5.2.2 Mit biobasierten Harzgrundkörpern 122 Literaturverzeichnis 123 Anhang 134 Liste der Veröffentlichungen 177 Versicherung 178
5

Contribution of Small-Scale Gum and Resin Commercialization to Local Livelihood and Rural Economic Development in the Drylands of Eastern Africa

Abtew, Asmamaw Alemu, Pretzsch, Jürgen, Secco, Laura, Mohamod, Tarig Elshikh 21 July 2014 (has links) (PDF)
This paper examines the extent to which the economic gains derived from gum and resin commercialization impact rural livelihood improvement under different resource management regimes in the drylands of Ethiopia and Sudan. Primary data were collected through semi-structured interviews with 240 randomly selected small-scale producers in four regions with gradients of resource management regimes. The survey was supplemented by secondary data, group discussions and key informant interviews. In the four regions, gum and resin income contributes to 14%–23% of the small-scale producers’ household income. Absolute income was positively correlated with resource management regime and commercialization level. It was higher from cultivated resources on private lands, followed by regulated access to wild resources. In open-access resources, the producers’ income was the lowest, although accessed by the poor and women. However, dependence on gum and resin was higher in open-access resource areas. Households’ socioeconomic characteristics, resource access, production and marketing variables determining income from gum and resin were identified and their variation across the cases is discussed. Overall, gum and resin commercialization in the study areas play a potential poverty alleviation role as a source of regular income, a safety net, and a means of helping producers move out of poverty.
6

The Vigani Cabinet - Analysis of historical resinous materials by gas chromatography - mass spectrometry and infrared spectroscopy / Das Vigani Kabinett - Analyse von historischen Harzen mittels Gaschromatography-Massenspectrometrie und Infrarotspectroskopie

Steigenberger, Gundel 09 July 2013 (has links) (PDF)
Natural resins have been in use for a long time and for manifold purposes resulting in a long and complex terminological history. The investigation of this history has so far been based on the connection between nomenclature and chemical composition. Because resin chemistry and the botanical classification of source plants are connected as well, the investigation of natural resins can be enhanced by adding taxonomy as an additional dimension, providing a more complex and complete picture of resin chemistry and resin use. The Vigani Cabinet, a collection of 300-year-old pharmaceutical and chemical materials owned by Queens’ College, Cambridge (UK), allows doing just that. A wide range of historical literature provides information about contemporary terminology, botanical and geographical origin, manufacture, trade and properties of resinous materials from the 18th century. This contemporary context is a particular feature of the Cabinet, which allows adding a historical dimension to the correlations between terminology, chemical composition and taxonomy. The dissertation thesis presented here provides an investigation of 17 botanical, 80 reference materials and samples from 24 natural resins from the Vigani Cabinet, studying these complex correlations and changes over time. The analytical method employed in this study was gas chromatography-mass spectrometry (GC-MS) with and without methylation with trimethylsulfoniumhydroxide. This technique provided detailed molecular compositions of the studied materials. Analysed botanical samples are taken from Pinaceae, Cupressaceae and Pistacia resins, commerical references from Araucariaceae, Copaifera, Fabaceae, Myroxylon and Burseraceae. Additionally, the soluble fraction of Baltic amber was analysed. Materials from the Vigani Cabinet analysed in this work were labelled as "turpentines", "pix burgundica", "sandaracha", "copaiba", "balsamum peruvianum and tolutanum", "mastiche", "anime", "copal", "elemi", "tacamahaca" and "succinum". Historical nomenclature of natural resins has not always been unequivocally associated with a botanical origin. The availability of natural resins changed throughout the centuries. Lack of knowledge, in particular about resins from over-seas, or adulterations resulting from changing harvesting methods, led to changes in trade names or variations in the composition of products traded under the same name. Generic names were used for resins with similar properties but different botanical (and geographical) origin. The thesis shows that a chemotaxonomic reference system is suitable for the identification of unknown resinous materials, and a number of new insights into the nomenclature of natural resins from the 17th and 18th century is obtained. The study of historical literature contributed in a significant way to the historico-cultural and archeometric research of the samples from the Vigani Cabinet and of natural resins in general and provided a basis for the interpretation of the chemical data from the Vigani samples. / Naturharze werden schon lange für sehr unterschiedliche Zwecke verwendet. Dies hat zu einer oft komplizierten Terminologie geführt, deren Untersuchung sich bisher auf den Zusammenhang zwischen dem Namen des Harzes und seiner chemischer Zusammensetzung stützte. Letztere ist aber auch mit der botanischer Herkunft und damit der Biochemie der Stammpflanze verknüpft, weshalb man chemotaxonomische Aspekte für die systematische Untersuchung von Naturharzen als zusätzliche Variablen nutzen kann. Dadurch erhält man, wie die gezeigt werden soll, ein vollständigeres und komplexeres Bild der Chemie und Nutzung von Naturharzen. Die hier präsentierte Untersuchung beschäftigt sich mit dem Vigani-Kabinett, einer 300 Jahre alten pharmazeutischen Materialiensammlung, die sich im Queens‘ College, Cambridge (UK), befindet. In der Literatur des ausgehenden 17. und des 18. Jahrhunderts finden sich zahlreiche Informationen zu Terminologie, botanischer und geographischer Herkunft, Verarbeitung, Handel und Eigenschaften von Naturharzen. Dadurch wird die historische Dimension des oben beschriebenen Zusammenhangs zwischen Terminologie, chemischer Zusammensetzung und Taxonomie erfahrbar. In der Arbeit werden 17 botanische Proben, 80 moderne Referenzmaterialien und 24 Proben aus dem Vigani-Kabinett im Hinblick auf diese Zusammenhänge und Veränderungen untersucht.Die chemischen Analysen wurden mit gekoppelter Gaschromatografie-Massenspektrometrie mit und ohne Methylierung mit Trimethylsulfoniumhydroxid durchgeführt. Damit konnte die molekulare Zusammensetzung der Proben detailliert untersucht werden. Die untersuchten botanischen Proben stammten von Pinaceae, Cupressaceae und Pistaciaharzen, kommerzielle Referenzen von Araucariaceae, Copaifera, Fabaceae, Myroxylon und Burseraceaeharzen. Zusätzlich wurde noch die lösliche Fraktion von Baltischem Bernstein untersucht. Die untersuchten Proben aus dem Vigani-Kabinett waren sowohl englisch als auch Latein mit "turpentines", "pix burgundica", "sandaracha", "copaiba", "mastiche", "anime", "copal", "elemi", "tacamahaca", "balsamum peruvianum and tolutanum" und "succinum" beschriftet. Zusammenfassend lässt sich sagen, dass die historische Nomenklatur von Naturharzen nicht immer eindeutig mit ihrem botanischen Ursprung verknüpft war. Zusätzlich veränderte sich die Erhältlichkeit der Harze im Laufe der Jahrhunderte. Durch fehlendes Wissen, insbesondere für Materialien und Pflanzen aus Übersee, oder Verfälschungen aufgrund von veränderten Fördermethoden veränderten sich die Handelsnamen dieser Materialien oder die Zusammensetzung von Materialien, die unter demselben Namen gehandelt wurden. Harze mit ähnlichen Eigenschaften aber unterschiedlichen botanischen (und geographischen) Ursprungs trugen generische Namen. Die Arbeit zeigt jedoch, dass ein chemotaxonomisches Bezugssystem die Identifizierung von unbekannten Harzen ermöglicht, und zeigt eine Reihe neuer Erkenntnisse über die Nomenklatur von Naturharzen des 17. und 18. Jahrhunderts. Die Untersuchung historischer Quellen trug dabei sehr zur Erhellung des historisch-kulturellen und archeometrischen Hintergrundes und zur Interpretation der chemischen Daten der Vigani-Proben bei.
7

Contribution of Small-Scale Gum and Resin Commercialization to Local Livelihood and Rural Economic Development in the Drylands of Eastern Africa

Abtew, Asmamaw Alemu, Pretzsch, Jürgen, Secco, Laura, Mohamod, Tarig Elshikh 21 July 2014 (has links)
This paper examines the extent to which the economic gains derived from gum and resin commercialization impact rural livelihood improvement under different resource management regimes in the drylands of Ethiopia and Sudan. Primary data were collected through semi-structured interviews with 240 randomly selected small-scale producers in four regions with gradients of resource management regimes. The survey was supplemented by secondary data, group discussions and key informant interviews. In the four regions, gum and resin income contributes to 14%–23% of the small-scale producers’ household income. Absolute income was positively correlated with resource management regime and commercialization level. It was higher from cultivated resources on private lands, followed by regulated access to wild resources. In open-access resources, the producers’ income was the lowest, although accessed by the poor and women. However, dependence on gum and resin was higher in open-access resource areas. Households’ socioeconomic characteristics, resource access, production and marketing variables determining income from gum and resin were identified and their variation across the cases is discussed. Overall, gum and resin commercialization in the study areas play a potential poverty alleviation role as a source of regular income, a safety net, and a means of helping producers move out of poverty.
8

The Vigani Cabinet - Analysis of historical resinous materials by gas chromatography - mass spectrometry and infrared spectroscopy

Steigenberger, Gundel 14 May 2013 (has links)
Natural resins have been in use for a long time and for manifold purposes resulting in a long and complex terminological history. The investigation of this history has so far been based on the connection between nomenclature and chemical composition. Because resin chemistry and the botanical classification of source plants are connected as well, the investigation of natural resins can be enhanced by adding taxonomy as an additional dimension, providing a more complex and complete picture of resin chemistry and resin use. The Vigani Cabinet, a collection of 300-year-old pharmaceutical and chemical materials owned by Queens’ College, Cambridge (UK), allows doing just that. A wide range of historical literature provides information about contemporary terminology, botanical and geographical origin, manufacture, trade and properties of resinous materials from the 18th century. This contemporary context is a particular feature of the Cabinet, which allows adding a historical dimension to the correlations between terminology, chemical composition and taxonomy. The dissertation thesis presented here provides an investigation of 17 botanical, 80 reference materials and samples from 24 natural resins from the Vigani Cabinet, studying these complex correlations and changes over time. The analytical method employed in this study was gas chromatography-mass spectrometry (GC-MS) with and without methylation with trimethylsulfoniumhydroxide. This technique provided detailed molecular compositions of the studied materials. Analysed botanical samples are taken from Pinaceae, Cupressaceae and Pistacia resins, commerical references from Araucariaceae, Copaifera, Fabaceae, Myroxylon and Burseraceae. Additionally, the soluble fraction of Baltic amber was analysed. Materials from the Vigani Cabinet analysed in this work were labelled as "turpentines", "pix burgundica", "sandaracha", "copaiba", "balsamum peruvianum and tolutanum", "mastiche", "anime", "copal", "elemi", "tacamahaca" and "succinum". Historical nomenclature of natural resins has not always been unequivocally associated with a botanical origin. The availability of natural resins changed throughout the centuries. Lack of knowledge, in particular about resins from over-seas, or adulterations resulting from changing harvesting methods, led to changes in trade names or variations in the composition of products traded under the same name. Generic names were used for resins with similar properties but different botanical (and geographical) origin. The thesis shows that a chemotaxonomic reference system is suitable for the identification of unknown resinous materials, and a number of new insights into the nomenclature of natural resins from the 17th and 18th century is obtained. The study of historical literature contributed in a significant way to the historico-cultural and archeometric research of the samples from the Vigani Cabinet and of natural resins in general and provided a basis for the interpretation of the chemical data from the Vigani samples.:CONTENTS 1 INTRODUCTION 1 1.1 Natural resins in a historical and modern context 1 1.2 The Vigani Cabinet and its historical background 3 1.3 Aim of the thesis - outline 6 2 LITERATURE REVIEW 8 2.1 Gymnosperm resins – conifer resins and products 9 2.1.1 Pinaceae 9 2.1.2 Cupressaceae 17 2.1.3 Araucariaceae 20 2.2 Angiosperm resins I – Fabales 21 2.3 Angiosperm resins II – Sapindales 30 2.3.1 Anacardiaceae 30 2.3.2 Burseraceae 35 2.3.3 Rutaceae 43 2.4 Fossil resins 45 2.5 Summary and research deficits 49 3 EXPERIMENTAL 53 3.1 Coupled gas chromatography and mass spectrometry 53 3.1.1 Materials 53 3.1.2 Sample preparation 54 3.1.3 Instrumentation 54 3.1.4 Data-Evaluation 58 3.2 Fourier transformation infrared spectroscopy 60 3.2.1 Sample preparation 61 3.2.2 Instrumentation 61 3.2.3 Data evaluation 61 4 RESULTS – REFERENCE MATERIALS 62 4.1 Gymnosperm resins – conifer resins and products 62 4.1.1 Pinaceae – Coniferous turpentines 62 4.1.1.1 Phytochemical markers – detection of adulterations 62 4.1.1.2 Aging by heat and light 73 4.1.2 Cupressaceae – Sandarac 80 4.1.3 Araucariaceae – Coniferous copals 88 4.1.4 Discussion 91 4.2 Angiosperm Resins I - Fabales 94 4.2.1 Copaifera – Copaiba balsam 94 4.2.2 Legume copals 102 4.2.3 Myroxylon – Balsam of Tolu and Peru 108 4.2.4 Discussion 117 4.3 Angiosperm resins II - Sapindales 120 4.3.1 Anacardiaceae – Pistacia resins 120 4.3.2 Burseraceae – Elemi, copal and others 127 4.3.3 Discussion 142 4.4 Fossil resins 144 4.4.1 Baltic amber 144 4.4.2 Discussion 153 4.5 Summary and research deficits 155 5 RESULTS – RESINOUS MATERIALS FROM THE VIGANI CABINET 160 5.1 Gymnosperm resins – conifer resins and products 162 5.1.1 1/8 Terebin. Strasb. 163 5.1.2 1/9 Tereb Com 170 5.1.3 1/10 Venice Turpentine 176 5.1.4 1/11 Venic. Turpent. 183 5.1.5 1/13 Tereb E Chio 188 5.1.6 A/23 Pix Burgundica 194 5.1.7 A/26 Sandaracha 203 5.2 Angiosperm resins I - Fabales 210 5.2.1 1/4 Balsam Cipivi 211 5.2.2 A/5 Gum Animi 218 5.2.3 La2/7 Unknown resin 228 5.2.4 1/31 Bals Peruv 230 5.2.5 2/1 Bals Peru 237 5.2.6 Z/17 Balsam Tolutanum 240 5. 3 Angiosperm resins II – Sapindales 245 5.3.1 A/11 Mastiche 246 5.3.2 1/14 Tereb i E Cypri 252 5.3.3 A/21 Gum Copal 258 5.3.4 A/24 [.] Elemi 268 5.3.5 A/22 Tacamahaca 276 5.3.6 Z/1 Tacamahaca 283 5.4 Fossil Resins 287 5.4.1 E/13 Succinum Citrinum 288 5.4.2 E/14 Succinum flavan 295 5.4.3 E/15 Succinum albam 302 5.4.4 E/16 Succinum nigram 307 5.4.5 F/13 L. Gagatis 313 6 CONCLUSIONS 316 7 REFERENCES 324 APPENDIX 365 Investigated materials from the Vigani Cabinet 366 Annotated list of historical literature 367 List of figures 374 List of tables 379 Compound lists 381 Atlas of mass spectra 422 / Naturharze werden schon lange für sehr unterschiedliche Zwecke verwendet. Dies hat zu einer oft komplizierten Terminologie geführt, deren Untersuchung sich bisher auf den Zusammenhang zwischen dem Namen des Harzes und seiner chemischer Zusammensetzung stützte. Letztere ist aber auch mit der botanischer Herkunft und damit der Biochemie der Stammpflanze verknüpft, weshalb man chemotaxonomische Aspekte für die systematische Untersuchung von Naturharzen als zusätzliche Variablen nutzen kann. Dadurch erhält man, wie die gezeigt werden soll, ein vollständigeres und komplexeres Bild der Chemie und Nutzung von Naturharzen. Die hier präsentierte Untersuchung beschäftigt sich mit dem Vigani-Kabinett, einer 300 Jahre alten pharmazeutischen Materialiensammlung, die sich im Queens‘ College, Cambridge (UK), befindet. In der Literatur des ausgehenden 17. und des 18. Jahrhunderts finden sich zahlreiche Informationen zu Terminologie, botanischer und geographischer Herkunft, Verarbeitung, Handel und Eigenschaften von Naturharzen. Dadurch wird die historische Dimension des oben beschriebenen Zusammenhangs zwischen Terminologie, chemischer Zusammensetzung und Taxonomie erfahrbar. In der Arbeit werden 17 botanische Proben, 80 moderne Referenzmaterialien und 24 Proben aus dem Vigani-Kabinett im Hinblick auf diese Zusammenhänge und Veränderungen untersucht.Die chemischen Analysen wurden mit gekoppelter Gaschromatografie-Massenspektrometrie mit und ohne Methylierung mit Trimethylsulfoniumhydroxid durchgeführt. Damit konnte die molekulare Zusammensetzung der Proben detailliert untersucht werden. Die untersuchten botanischen Proben stammten von Pinaceae, Cupressaceae und Pistaciaharzen, kommerzielle Referenzen von Araucariaceae, Copaifera, Fabaceae, Myroxylon und Burseraceaeharzen. Zusätzlich wurde noch die lösliche Fraktion von Baltischem Bernstein untersucht. Die untersuchten Proben aus dem Vigani-Kabinett waren sowohl englisch als auch Latein mit "turpentines", "pix burgundica", "sandaracha", "copaiba", "mastiche", "anime", "copal", "elemi", "tacamahaca", "balsamum peruvianum and tolutanum" und "succinum" beschriftet. Zusammenfassend lässt sich sagen, dass die historische Nomenklatur von Naturharzen nicht immer eindeutig mit ihrem botanischen Ursprung verknüpft war. Zusätzlich veränderte sich die Erhältlichkeit der Harze im Laufe der Jahrhunderte. Durch fehlendes Wissen, insbesondere für Materialien und Pflanzen aus Übersee, oder Verfälschungen aufgrund von veränderten Fördermethoden veränderten sich die Handelsnamen dieser Materialien oder die Zusammensetzung von Materialien, die unter demselben Namen gehandelt wurden. Harze mit ähnlichen Eigenschaften aber unterschiedlichen botanischen (und geographischen) Ursprungs trugen generische Namen. Die Arbeit zeigt jedoch, dass ein chemotaxonomisches Bezugssystem die Identifizierung von unbekannten Harzen ermöglicht, und zeigt eine Reihe neuer Erkenntnisse über die Nomenklatur von Naturharzen des 17. und 18. Jahrhunderts. Die Untersuchung historischer Quellen trug dabei sehr zur Erhellung des historisch-kulturellen und archeometrischen Hintergrundes und zur Interpretation der chemischen Daten der Vigani-Proben bei.:CONTENTS 1 INTRODUCTION 1 1.1 Natural resins in a historical and modern context 1 1.2 The Vigani Cabinet and its historical background 3 1.3 Aim of the thesis - outline 6 2 LITERATURE REVIEW 8 2.1 Gymnosperm resins – conifer resins and products 9 2.1.1 Pinaceae 9 2.1.2 Cupressaceae 17 2.1.3 Araucariaceae 20 2.2 Angiosperm resins I – Fabales 21 2.3 Angiosperm resins II – Sapindales 30 2.3.1 Anacardiaceae 30 2.3.2 Burseraceae 35 2.3.3 Rutaceae 43 2.4 Fossil resins 45 2.5 Summary and research deficits 49 3 EXPERIMENTAL 53 3.1 Coupled gas chromatography and mass spectrometry 53 3.1.1 Materials 53 3.1.2 Sample preparation 54 3.1.3 Instrumentation 54 3.1.4 Data-Evaluation 58 3.2 Fourier transformation infrared spectroscopy 60 3.2.1 Sample preparation 61 3.2.2 Instrumentation 61 3.2.3 Data evaluation 61 4 RESULTS – REFERENCE MATERIALS 62 4.1 Gymnosperm resins – conifer resins and products 62 4.1.1 Pinaceae – Coniferous turpentines 62 4.1.1.1 Phytochemical markers – detection of adulterations 62 4.1.1.2 Aging by heat and light 73 4.1.2 Cupressaceae – Sandarac 80 4.1.3 Araucariaceae – Coniferous copals 88 4.1.4 Discussion 91 4.2 Angiosperm Resins I - Fabales 94 4.2.1 Copaifera – Copaiba balsam 94 4.2.2 Legume copals 102 4.2.3 Myroxylon – Balsam of Tolu and Peru 108 4.2.4 Discussion 117 4.3 Angiosperm resins II - Sapindales 120 4.3.1 Anacardiaceae – Pistacia resins 120 4.3.2 Burseraceae – Elemi, copal and others 127 4.3.3 Discussion 142 4.4 Fossil resins 144 4.4.1 Baltic amber 144 4.4.2 Discussion 153 4.5 Summary and research deficits 155 5 RESULTS – RESINOUS MATERIALS FROM THE VIGANI CABINET 160 5.1 Gymnosperm resins – conifer resins and products 162 5.1.1 1/8 Terebin. Strasb. 163 5.1.2 1/9 Tereb Com 170 5.1.3 1/10 Venice Turpentine 176 5.1.4 1/11 Venic. Turpent. 183 5.1.5 1/13 Tereb E Chio 188 5.1.6 A/23 Pix Burgundica 194 5.1.7 A/26 Sandaracha 203 5.2 Angiosperm resins I - Fabales 210 5.2.1 1/4 Balsam Cipivi 211 5.2.2 A/5 Gum Animi 218 5.2.3 La2/7 Unknown resin 228 5.2.4 1/31 Bals Peruv 230 5.2.5 2/1 Bals Peru 237 5.2.6 Z/17 Balsam Tolutanum 240 5. 3 Angiosperm resins II – Sapindales 245 5.3.1 A/11 Mastiche 246 5.3.2 1/14 Tereb i E Cypri 252 5.3.3 A/21 Gum Copal 258 5.3.4 A/24 [.] Elemi 268 5.3.5 A/22 Tacamahaca 276 5.3.6 Z/1 Tacamahaca 283 5.4 Fossil Resins 287 5.4.1 E/13 Succinum Citrinum 288 5.4.2 E/14 Succinum flavan 295 5.4.3 E/15 Succinum albam 302 5.4.4 E/16 Succinum nigram 307 5.4.5 F/13 L. Gagatis 313 6 CONCLUSIONS 316 7 REFERENCES 324 APPENDIX 365 Investigated materials from the Vigani Cabinet 366 Annotated list of historical literature 367 List of figures 374 List of tables 379 Compound lists 381 Atlas of mass spectra 422

Page generated in 0.053 seconds