• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 35
  • 18
  • 18
  • 17
  • 14
  • 11
  • 10
  • 10
  • 8
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling, simulations, and experiments to balance performance and fairness in P2P file-sharing systems

Li,Yunzhao January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Don Gruenbacher / Caterina Scoglio / In this dissertation, we investigate research gaps still existing in P2P file-sharing systems: the necessity of fairness maintenance during the content information publishing/retrieving process, and the stranger policies on P2P fairness. First, through a wide range of measurements in the KAD network, we present the impact of a poorly designed incentive fairness policy on the performance of looking up content information. The KAD network, designed to help peers publish and retrieve sharing information, adopts a distributed hash table (DHT) technology and combines itself into the aMule/eMule P2P file-sharing network. We develop a distributed measurement framework that employs multiple test nodes running on the PlanetLab testbed. During the measurements, the routing tables of around 20,000 peers are crawled and analyzed. More than 3,000,000 pieces of source location information from the publishing tables of multiple peers are retrieved and contacted. Based on these measurements, we show that the routing table is well maintained, while the maintenance policy for the source-location-information publishing table is not well designed. Both the current maintenance schedule for the publishing table and the poor incentive policy on publishing peers eventually result in the low availability of the publishing table, which accordingly cause low lookup performance of the KAD network. Moreover, we propose three possible solutions to address these issues: the self-maintenance scheme with short period renewal interval, the chunk-based publishing/retrieving scheme, and the fairness scheme. Second, using both numerical analyses and agent-based simulations, we evaluate the impact of different stranger policies on system performance and fairness. We explore that the extremely restricting stranger policy brings the best fairness at a cost of performance degradation. The varying tendency of performance and fairness under different stranger policies are not consistent. A trade-off exists between controlling free-riding and maintaining system performance. Thus, P2P designers are required to tackle strangers carefully according to their individual design goals. We also show that BitTorrent prefers to maintain fairness with an extremely restricting stranger policy, while aMule/eMule’s fully rewarding stranger policy promotes free-riders’ benefit.
12

Geo-process lookup management

Hägglund, Andreas January 2017 (has links)
This thesis presents a method to deploy and lookup applications and devices based on a geographical location. The proposed solution is a combination of two existing technologies, where the first one is a geocode system to encode latitude and longitude coordinates, and the second one is a Distributed Hash Table (DHT) where values are stored and accessed with a $<$key,value$>$ pair. The purpose of this work is to be able to search a specific location for the closest device that solves the user needs, such as finding an Internet of Things (IoT) device. The thesis covers a method for searching by iterating key-value pairs in the DHT and expanding the area to find the devices further away. The search is performed using two main algorithm implementations LayerExpand and SpiralBoxExpand, to scan the area around where the user started the search. LayerExpand and SpiralBoxExpand are tested and evaluated in comparison to each other. The comparison results are presented in the form of plots where both of the functions are shown together. The function analysis results show how the size of the DHT, the number of users, and size of the search area affects the performance of the searches.
13

Uma arquitetura escalável para recuperação e atualização de informações com relação de ordem total. / A scalable architecture for retrieving information with total order relationship.

Rocha, Vladimir Emiliano Moreira 17 November 2017 (has links)
Desde o início do século XXI, vivenciamos uma explosão na produção de informações de diversos tipos, tais como fotos, áudios, vídeos, entre outros. Dentre essas informações, existem aquelas em que a informação pode ser dividida em partes menores, mas que devem ser relacionadas seguindo uma ordem total. Um exemplo deste tipo de informação é um arquivo de vídeo que foi dividido em dez segmentos identificados com números de 1 a 10. Para reproduzir o vídeo original a partir dos segmentos é necessário que seus identificadores estejam ordenados. A estrutura denominada tabela de hash distribuída (DHT) tem sido amplamente utilizada para armazenar, atualizar e recuperar esse tipo de informação de forma eficiente em diversos cenários, como monitoramento de sensores e vídeo sob demanda. Entretanto, a DHT apresenta problemas de escalabilidade quando um membro da estrutura não consegue atender as requisições recebidas, trazendo como consequência a inacessibilidade da informação. Este trabalho apresenta uma arquitetura em camadas denominada MATe, que trata o problema da escalabilidade em dois níveis: estendendo a DHT com a introdução de agentes baseados na utilidade e organizando a quantidade de requisições solicitadas. A primeira camada trata a escalabilidade ao permitir a criação de novos agentes com o objetivo de distribuir as requisições evitando que um deles tenha a escalabilidade comprometida. A segunda camada é composta por grupos de dispositivos organizados de tal forma que somente alguns deles serão escolhidos para fazer requisições. A arquitetura foi implementada para dois cenários onde os problemas de escalabilidade acontecem: (i) monitoramento de sensores; e (ii) vídeo sob demanda. Para ambos cenários, os resultados experimentais mostraram que MATe melhora a escalabilidade quando comparada com as implementações originais da DHT. / Since the beginning of the 21st century, we have experienced an explosive growth in the generation of information, such as photos, audios, videos, among others. Within this information, there are some in which the information can be divided and related following a total order. For example, a video file can be divided into ten segments identified with numbers from 1 to 10. To play the original video from these segments, their identifiers must be fully ordered. A structure called Distributed Hash Table (DHT) has been widely used to efficiently store, update, and retrieve this kind of information in several application domains, such as video on demand and sensor monitoring. However, DHT encounters scalability issues when one of its members fails to answer the requests, resulting in information loss. This work presents MATe, a layered architecture that addresses the problem of scalability on two levels: extending the DHT with the introduction of utility-based agents and organizing the volume of requests. The first layer manages the scalability by allowing the creation of new agents to distribute the requests when one of them has compromised its scalability. The second layer is composed of groups of devices, organized in such a way that only a few of them will be chosen to perform requests. The architecture was implemented in two application scenarios where scalability problems arise: (i) sensor monitoring; and (ii) video on demand. For both scenarios, the experimental results show that MATe improves scalability when compared to original DHT implementations.
14

Scalable Streaming Graph Partitioning

Seyed Khamoushi, Seyed Mohammadreza January 2017 (has links)
Large-scale graph-structured datasets are growing at an increasing rate. Social network graphs are an example of these datasets. Processing large-scale graphstructured datasets are central to many applications ranging from telecommunication to biology and has led to the development of many parallel graph algorithms. Performance of parallel graph algorithms largely depends on how the underlying graph is partitioned. In this work, we focus on studying streaming vertex-cut graph partitioning algorithms where partitioners receive a graph as a stream of vertices and edges and assign partitions to them on their arrival once and for all. Some of these algorithms maintain a state during partitioning. In some cases, the size of the state is so huge that it cannot be kept in a single machine memory. In many real world scenarios, several instances of a streaming graph partitioning algorithm are run simultaneously to improve the system throughput. However, running several instances of a partitioner drops the partitioning quality considerably due to the incomplete information of partitioners. Even frequently sharing states and its combination with buffering mechanisms does not completely solves the problem because of the heavy communication overhead produced by partitioners. In this thesis, we propose an algorithm which tackles the problem of low scalability and performance of existing streaming graph partitioning algorithms by providing an efficient way of sharing states and its combination with windowing mechanism. We compare state-of-the-art streaming graph partitioning algorithms with our proposed solution concerning performance and efficiency. Our solution combines a batch processing method with a shared-state mechanism to achieve both an outstanding performance and a high partitioning quality. Shared state mechanism is used for sharing states of partitioners. We provide a robust implementation of our method in a PowerGraph framework. Furthermore, we empirically evaluate the impact of partitioning quality on how graph algorithms perform in a real cloud environment. The results show that our proposed method outperforms other algorithms in terms of partitioning quality and resource consumption and improves partitioning time considerably. On average our method improves partitioning time by 23%, decreases communication load by 15% and increase memory consumption by only 5% compared to the state-of-the-art streaming graph partitioning.
15

Chord - A Distributed Hash Table

Liao, Yimei 24 July 2006 (has links) (PDF)
An introduction to Chord Algorithm.
16

Chord - A Distributed Hash Table

Liao, Yimei 21 August 2007 (has links) (PDF)
Source is converted into pdf format. An introduction to Chord Algorithm.
17

Algorithmic Engineering Towards More Efficient Key-Value Systems

Fan, Bin 18 December 2013 (has links)
Distributed key-value systems have been widely used as elemental components of many Internet-scale services at sites such as Amazon, Facebook and Twitter. This thesis examines a system design approach to scale existing key-value systems, both horizontally and vertically, by carefully engineering and integrating techniques that are grounded in recent theory but also informed by underlying architectures and expected workloads in practice. As a case study, we re-design FAWN-KV—a distributed key-value cluster consisting of “wimpy” key-value nodes—to use less memory but achieve higher throughput even in the worst case. First, to improve the worst-case throughput of a FAWN-KV system, we propose a randomized load balancing scheme that can fully utilize all the nodes regardless of their query distribution. We analytically prove and empirically demonstrate that deploying a very small but extremely fast load balancer at FAWN-KV can effectively prevent uneven or dynamic workloads creating hotspots on individual nodes. Moreover, our analysis provides service designers a mathematically tractable approach to estimate the worst-case throughput and also avoid drastic overprovisioning in similar distributed key-value systems. Second, to implement the high-speed load balancer and also to improve the space efficiency of individual key-value nodes, we propose novel data structures and algorithms, including the cuckoo filter, a Bloom filter replacement that is high-speed, highly compact and delete-supporting, and optimistic cuckoo hashing, a fast and space-efficient hashing scheme that scales on multiple CPUs. Both algorithms are built upon conventional cuckoo hashing but are optimized for our target architectures and workloads. Using them as building blocks, we design and implement MemC3 to serve transient data from DRAM with high throughput and low-latency retrievals, and SILT to provide cost-effective access to persistent data on flash storage with extremely small memory footprint (e.g., 0.7 bytes per entry)
18

Uma arquitetura escalável para recuperação e atualização de informações com relação de ordem total. / A scalable architecture for retrieving information with total order relationship.

Vladimir Emiliano Moreira Rocha 17 November 2017 (has links)
Desde o início do século XXI, vivenciamos uma explosão na produção de informações de diversos tipos, tais como fotos, áudios, vídeos, entre outros. Dentre essas informações, existem aquelas em que a informação pode ser dividida em partes menores, mas que devem ser relacionadas seguindo uma ordem total. Um exemplo deste tipo de informação é um arquivo de vídeo que foi dividido em dez segmentos identificados com números de 1 a 10. Para reproduzir o vídeo original a partir dos segmentos é necessário que seus identificadores estejam ordenados. A estrutura denominada tabela de hash distribuída (DHT) tem sido amplamente utilizada para armazenar, atualizar e recuperar esse tipo de informação de forma eficiente em diversos cenários, como monitoramento de sensores e vídeo sob demanda. Entretanto, a DHT apresenta problemas de escalabilidade quando um membro da estrutura não consegue atender as requisições recebidas, trazendo como consequência a inacessibilidade da informação. Este trabalho apresenta uma arquitetura em camadas denominada MATe, que trata o problema da escalabilidade em dois níveis: estendendo a DHT com a introdução de agentes baseados na utilidade e organizando a quantidade de requisições solicitadas. A primeira camada trata a escalabilidade ao permitir a criação de novos agentes com o objetivo de distribuir as requisições evitando que um deles tenha a escalabilidade comprometida. A segunda camada é composta por grupos de dispositivos organizados de tal forma que somente alguns deles serão escolhidos para fazer requisições. A arquitetura foi implementada para dois cenários onde os problemas de escalabilidade acontecem: (i) monitoramento de sensores; e (ii) vídeo sob demanda. Para ambos cenários, os resultados experimentais mostraram que MATe melhora a escalabilidade quando comparada com as implementações originais da DHT. / Since the beginning of the 21st century, we have experienced an explosive growth in the generation of information, such as photos, audios, videos, among others. Within this information, there are some in which the information can be divided and related following a total order. For example, a video file can be divided into ten segments identified with numbers from 1 to 10. To play the original video from these segments, their identifiers must be fully ordered. A structure called Distributed Hash Table (DHT) has been widely used to efficiently store, update, and retrieve this kind of information in several application domains, such as video on demand and sensor monitoring. However, DHT encounters scalability issues when one of its members fails to answer the requests, resulting in information loss. This work presents MATe, a layered architecture that addresses the problem of scalability on two levels: extending the DHT with the introduction of utility-based agents and organizing the volume of requests. The first layer manages the scalability by allowing the creation of new agents to distribute the requests when one of them has compromised its scalability. The second layer is composed of groups of devices, organized in such a way that only a few of them will be chosen to perform requests. The architecture was implemented in two application scenarios where scalability problems arise: (i) sensor monitoring; and (ii) video on demand. For both scenarios, the experimental results show that MATe improves scalability when compared to original DHT implementations.
19

Exploring Material Representations for Sparse Voxel DAGs

Pineda, Steven 01 June 2021 (has links) (PDF)
Ray tracing is a popular technique used in movies and video games to create compelling visuals. Ray traced computer images are increasingly becoming more realistic and almost indistinguishable from real-word images. Due to the complexity of scenes and the desire for high resolution images, ray tracing can become very expensive in terms of computation and memory. To address these concerns, researchers have examined data structures to efficiently store geometric and material information. Sparse voxel octrees (SVOs) and directed acyclic graphs (DAGs) have proven to be successful geometric data structures for reducing memory requirements. Moxel DAGs connect material properties to these geometric data structures, but experience limitations related to memory, build times, and render times. This thesis examines the efficacy of connecting an alternative material data structure to existing geometric representations. The contributions of this thesis include the creation of a new material representation using hashing to accompany DAGs, a method to calculate surface normals using neighboring voxel data, and a demonstration and validation that DAGs can be used to super sample based on proximity. This thesis also validates the visual acuity from these methods via a user survey comparing different output images. In comparison to the Moxel DAG implementation, this work increases render time, but reduces build times and memory, and improves the visual quality of output images.
20

DHT-based Collaborative Web Translation

Tu, Zongjie January 2016 (has links)
No description available.

Page generated in 0.0763 seconds