Spelling suggestions: "subject:"hausdorff property"" "subject:"haussdorff property""
1 |
Banachbündel über q-konvexen MannigfaltigkeitenErat, Matjaž 01 September 2006 (has links)
Sei V ein holomorphes Vektorbündel über einer q-konvexen Mannigfaltigkeit X. Die Andreotti-Grauert-Theorie sagt, dass die r-te Kohomologiegruppe holomorpher Schnitte mit Werten in V endlich-dimensional ist und dass die Kohomologie verschwindet, falls X q-vollständig ist. Ist E ein holomorphes Banachbündel über X, dann ist bekannt, dass die erste Kohomologiegruppe verschwindet, falls X Steinsch ist. Kapitel I gibt einen ausführlichen Überblick über die Arbeit. In Kapitel II wird gezeigt, dass es holomorphe Hilbertbündel über 1-konvexen Mannigfaltigkeiten gibt, für die die erste Kohomologie nicht Hausdorffsch ist. In Kapitel III wird folgender Endlichkeitssatz gezeigt: Ist E ein holomorph triviales Banachbündel oder ein holomorphes Banachbündel von kompaktem Typ mit kompakter Approximationseigenschaft über einer q-konvexen Mannigfaltigkeit X, und ist V ein holomorphes Vektorbündel über X, für das die q-te Kohomologie verschwindet, dann gilt: Die q-te Kohomologie für das Tensorprodukt von V und E ist endlich-dimensional. Ist X q-vollständig, dann verschwindet die r-te Kohomologie, falls r größer oder gleich q ist. Für r größer q kann dies auch für beliebige holomorphe Banachbündel E gezeigt werden. Im Anhang wird skizziert, wie der Ansatz der L2-Methode im Fall r gleich q für Hilbertbündel zu einem Verschwindungssatz führen könnte. / Let V be a holomorphic vector bundle over a q-convex manifold X. The Andreotti-Grauert theory says that the r-th cohomology group of holomorphic section with values in V is finite dimensional and that the cohomology is vanishing if X is q-complete. If E is a holomorphic Banach bundle over X, it is known that the first cohomology group vanishes if X is Stein. Chapter I gives a detailed overview of the work. In chapter II it is shown that there are holomorphic Hilbert bundles over 1-convex manifolds such that the first cohomology of the bundle is not Hausdorff. In chapter III the following finiteness theorem is shown: If E is a holomorphically trivial Banach bundle or a holomorphic Banach bundle of compact type with the compact approximation property over a q-convex manifold X, and if V is a holomorphic vector bundle over X such that the q-th cohomology vanishes, then the following holds true: The q-th cohomology for the tensor product of V and E is finite dimensional. If X is q-complete, then the r-th cohomology vanishes if r is greater or equal q. If r is greater than q, this is shown also for arbitrary holomorphic Banach bundles E. In the appendix it is sketched how for r equal q the L2 method could yield a vanishing theorem for Hilbert bundles.
|
Page generated in 0.0487 seconds