• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • 2
  • 1
  • Tagged with
  • 52
  • 52
  • 15
  • 13
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Development Of Site Specific Vertical Design Spectrum For Turkey

Akyuz, Emre 01 January 2013 (has links) (PDF)
Vertical design spectra may be developed in a probabilistic seismic hazard assessment (PSHA) by computing the hazard using vertical ground motion prediction equations (GMPEs), or using a vertical-to-horizontal spectral acceleration (V/H) ratio GMPEs to scale the horizontal spectrum that was developed using the results of horizontal component PSHA. The objective of this study is to provide GMPEs that are compatible with regional ground motion characteristics to perform both alternatives. GMPEs for the V/H ratio were developed recently by G&uuml / lerce and Abrahamson (2011) using NGA-W1 database. A strong motion dataset consistent with the V/H ratio model parameters is developed by including strong motion data from earthquakes occurred in Turkey with at least three recordings per earthquake. The compatibility of GA2011 V/H ratio model with the magnitude, distance, and site amplification scaling of Turkish ground motion dataset is evaluated by using inter-event and intra-event residual plots and necessary coefficients of the model is adjusted to reflect the regional characteristics. Analysis of the model performance in the recent moderate-tolarge magnitude earthquakes occurred in Turkey shows that the Turkey-Adjusted GA2011 model is a suitable candidate V/H ratio model for PSHA studies conducted in Turkey. Using the same dataset, a preliminary vertical ground motion prediction equation for Turkey consistent with the preliminary vertical model based on NGA-W1 dataset is developed. Proposed preliminary model is applicable to magnitudes 5-8.5, distances 0-200 km, and spectral periods of 0-10 seconds and offers an up-to-date alternative to the regional vertical GMPEs proposed by Kalkan and G&uuml / lkan (2004).
32

Probabilistic Seismic Hazard Assessment Of Ilgaz - Abant Segments Of North Anatolian Fault Using Improved Seismic Source Models

Levendoglu, Mert 01 February 2013 (has links) (PDF)
Bolu-Ilgaz region was damaged by several large earthquakes in the last century and the structural damage was substantial especially after the 1944 and 1999 earthquakes. The objective of this study is to build the seismic source characterization model for the rupture zone of 1944 Bolu-Gerede earthquake and perform probabilistic seismic hazard assessment (PSHA) in the region. One of the major improvements over the previous PSHA practices accomplished in this study is the development of advanced seismic source models in terms of source geometry and reoccurrence relations. Geometry of the linear fault segments are determined and incorporated with the help of available fault maps. Composite magnitude distribution model is used to properly represent the characteristic behavior of NAF without an additional background zone. Fault segments, rupture sources, rupture scenarios and fault rupture models are determined using the WG-2003 terminology. The Turkey-Adjusted NGAW1 (G&uuml / lerce et al., 2013) prediction models are employed for the first time on NAF system. The results of the study is presented in terms of hazard curves, deaggregation of the hazard and uniform hazard spectrum for four main locations in the region to provide basis for evaluation of the seismic design of special structures in the area. Hazard maps of the region for rock site conditions and for the proposed site characterization model are provided to allow the user perform site-specific hazard assessment for local site conditions and develop site-specific design spectrum. The results of the study will be useful to manage the future seismic hazard in the region.
33

Probabilistic Seismic Hazard Assessment For Earthquake Induced Landslides

Balal, Onur 01 January 2013 (has links) (PDF)
Earthquake-induced slope instability is one of the major sources of earthquake hazards in near fault regions. Simplified tools, such as Newmark&rsquo / s Sliding Block (NSB) Analysis are widely used to represent the stability of a slope under earthquake shaking. The outcome of this analogy is the slope displacement where larger displacement values indicate higher seismic slope instability risk. Recent studies in the literature propose empirical models between the slope displacement and single or multiple ground motion intensity measures such as peak ground acceleration or Arias intensity. These correlations are based on the analysis of large datasets from global ground motion recording database (PEER NGA-W1 Database). Ground motions from earthquakes occurred in Turkey are poorly represented in NGA-W1 database since corrected and processed data from Turkey was not available until recently. The objective of this study is to evaluate the compatibility of available NSB displacement prediction models for the Probabilistic Seismic Hazard Assessment (PSHA) applications in Turkey using a comprehensive dataset of ground motions recorded during earthquakes occurred in Turkey. Then the application of selected NSB displacement prediction model in a vector-valued PSHA framework is demonstrated with the explanations of seismic source characterization, ground motion prediction models and ground motion intensity measure correlation coefficients. The results of the study is presented in terms of hazard curves and a comparison is made with a case history in Asarsuyu Region where seismically induced landslides (Bakacak Landslides) had taken place during 1999 D&uuml / zce Earthquake.
34

Probabilistic Seismic Hazard Assessment Of Eastern Marmara And Evaluation Of Turkish Earthquake Code Requirements

Ocak, Recai Soner 01 November 2011 (has links) (PDF)
The primary objective of this study is to evaluate the seismic hazard in the Eastern Marmara Region using improved seismic source models and enhanced ground motion prediction models by probabilistic approach. Geometry of the fault zones (length, width, dip angle, segmentation points etc.) is determined by the help of available fault maps and traced source lines on the satellite images. State of the art rupture model proposed by USGS Working Group in 2002 is applied to the source system. Composite reoccurrence model is used for all seismic sources in the region to represent the characteristic behavior of North Anatolian Fault. New and improved global ground motion models (NGA models) are used to model the ground motion variability for this study. Previous studies, in general, used regional models or older ground motion prediction models which were updated by their developers during the NGA project. New NGA models were improved in terms of additional prediction parameters (such as depth of the source, basin effects, site dependent standard deviations, etc.), statistical approach, and very well constrained global database. The use of NGA models reduced the epistemic uncertainty in the total hazard incorporated by regional or older models using smaller datasets. The results of the study is presented in terms of hazard curves, deaggregation of the hazard and uniform hazard spectrum for six main locations in the region (Adapazari, Duzce, Golcuk, Izmit, Iznik, and Sapanca City Centers) to provide basis for seismic design of special structures in the area. Hazard maps of the region for rock site conditions at the accepted levels of risk by Turkish Earthquake Code (TEC-2007) are provided to allow the user perform site-specific hazard assessment for local site conditions and develop site-specific design spectrum. Comparison of TEC-2007 design spectrum with the uniform hazard spectrum developed for selected locations is also presented for future reference.
35

Preparation Of A Source Model For The Eastern Marmara Region Along The North Anatolian Fault Segments And Probabilistic Seismic Hazard Assessment Of Duzce Province

Cambazoglu, Selim 01 March 2012 (has links) (PDF)
The North Anatolian Fault System is one of the most important active strike-slip fault systems in the world. The August 17, 1999 and November 12, 1999 earthquakes at Kocaeli and D&uuml / zce are the most recent devastating earthquakes. The study area lies in the Eastern Marmara Region and is bounded by the 28.55-33.75 E and 40.00-41.20 N, latitude and longitude coordinates, respectively. There are numerous studies conducted in the study area in terms of active tectonics and seismicity, however studies are scale dependent. Therefore, a comprehensive literature survey regarding active tectonics of the region was conducted and these previous studies were combined with the lineaments extracted from 10 ASTER images via principle component analysis manual extraction method. Therefore, a line seismic source model for the Eastern Marmara region was compiled mainly based on major seismic events of instrumental period. The seismicity of these line segments were compared with the instrumental period earthquake catalogue compiled by Kandilli Observatory and Earthquake Research Institute with a homogeneous magnitude scale between 1900 and 2005. Secondary event and completeness of this catalogue was checked. The final catalogue was matched with the compiled seismic source for historical seismicity and source-scenario-segment-weight relationships were developed. This developed seismic source model was tested by a probabilistic seismic hazard assessment for D&uuml / zce city center by utilizing four different ground motion prediction equations. It was observed that Gutenberg-Richter seismicity parameter &lsquo / b&rsquo / does not have significant effect over the model, however change in the segmentation model have a low but certain influence.
36

Site Characterization And Seismic Hazard Analysis With Local Site Effects For Microzonation Of Bangalore

Anbazhagan, P 07 1900 (has links)
Seismic hazard and microzonation of cities enable to characterize the potential seismic areas that need to be taken into account when designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of geotechnical microzonation maps will provide an effective solution for city planning and input to earthquake resistant design of structures in an area. Seismic hazard is the study of expected earthquake ground motions at any point on the earth. Microzonation is the process of sub division of region in to number of zones based on the earthquake effects in the local scale. Seismic microzonation is the process of estimating response of soil layers under earthquake excitation and thus the variation of ground motion characteristic on the ground surface. Geotechnical site characterization and assessment of site response during earthquakes is one of the crucial phases of seismic microzonation with respect to ground shaking intensity, attenuation, amplification rating and liquefaction susceptibility. Microzonation mapping of seismic hazards can be expressed in relative or absolute terms, on an urban block-by-block scale, based on local soil conditions (such as soil types) that affect ground shaking levels or vulnerability to soil liquefaction. Such maps would provide general guidelines for integrated planning of cities and in positioning the types of new structures that are most suited to an area, along with information on the relative damage potential of the existing structures in a region. In the present study an attempt has been made to characterize the site and to study the seismic hazard analysis considering the local site effects and to develop microzonation maps for Bangalore. Seismic hazard analysis and microzonation of Bangalore is addressed in this study in three parts: In the first part, estimation of seismic hazard using seismotectonic and geological information. Second part deals about site characterization using geotechnical and shallow geophysical techniques. An area of 220 sq.km, encompassing Bangalore Municipal Corporation has been chosen as the study area in this part of the investigation. There were over 150 lakes, though most of them are dried up due to erosion and encroachments leaving only 64 at present in an area of 220 sq. km and emphasizing the need to study site effects. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis (using the program SHAKE 2000) using both borehole SPT data and shear wave velocity survey data within an area of 220 sq. km. Further, field experiments using microtremor studies have also been carried out (jointly with NGRI) for evaluation of predominant frequency of the soil columns. The same has been assessed using 1-D ground response analysis and compared with microtremor results. Further, Seed and Idriss simplified approach has been adopted to evaluate the liquefaction susceptibility and liquefaction resistance assessment. Microzonation maps have been prepared for Bangalore city covering 220 sq. km area on a scale of 1:20000. Deterministic Seismic Hazard Analysis (DSHA) for Bangalore has been carried out by considering the past earthquakes, assumed subsurface fault rupture lengths and point source synthetic ground motion model. The seismic sources for region have been collected by considering seismotectonic atlas map of India and lineaments identified from satellite remote sensing images. Analysis of lineaments and faults help in understanding the regional seismotectonic activity of the area. Maximum Credible Earthquake (MCE) has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore. Earthquake data are collected from United State Geological Survey (USGS), Indian Metrological Department (IMD), New Delhi; Geological Survey of India (GSI) and Amateur Seismic Centre (ASC), National Geophysical Research Institute (NGRI),Hyderabad; Centre for Earth Science Studies (CESS), Akkulam, Kerala; Gauribindanur (GB) Seismic station and other public domain sites. Source magnitude for each source is chosen from the maximum reported past earthquake close to that source and shortest distance from each source to Bangalore is arrived from the newly prepared seismotectonic map of the area. Using these details, and, attenuation relation developed for southern India by Iyengar and Raghukanth (2004), the peak ground acceleration (PGA) has been estimated. A parametric study has been carried out to find fault subsurface rupture length using past earthquake data and Wells and Coppersmith (1994) relation between the subsurface lengths versus earthquake magnitudes. Further seismological model developed by Boore (1983, 2003) SMSIM program has been used to generate synthetic ground motions from vulnerable sources identified in above two methods. From the above three approaches maximum PGA of 0.15g was estimated for Bangalore. This value was obtained for a maximum credible earthquake (MCE) having a moment magnitude of 5.1 from a source of Mandya-Channapatna-Bangalore lineament. Considering this lineament and MCE, a synthetic ground motion has been generated for 850 borehole locations and they are used to prepare PGA map at rock level. The past seismic data has been collected for almost 200 years from different sources such as IMD, BARC (Gauribidanur array), NGRI, CESS, ASC center, USGS, and other public domain data. The seismic data is seen to be homogenous for the last four decades irrespective of the magnitude. Seismic parameters were then evaluated using the data corresponding to the last four decades and also the mixed data (using Kijko’s analysis) for Bangalore region, which are found to be comparable with the earlier reported seismic parameters for south India. The probabilities of distance, magnitude and peak ground acceleration have been evaluated for the six most vulnerable sources using PSHA (Probabilistic Seismic Hazard Analysis). The mean annual rate of exceedance has been calculated for all the six sources at the rock level. The cumulative probability hazard curves have been generated at the bedrock level for peak ground acceleration and spectral acceleration. The spectral acceleration calculation corresponding to a period of 1sec and 5% damping are evaluated. For the design of structures, uniform hazard response spectrum (UHRS) at rock level is developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) values corresponding to 10% probability of exceedance in 50 years are comparable to the PGA values obtained in deterministic seismic hazard analysis (DSHA) and higher than Global Seismic Hazard Assessment Program (GSHAP) maps of Bhatia et.al (1997) for the Indian shield area. The 3-D subsurface model with geotechnical data has been generated for site characterization of Bangalore. The base map of Bangalore city (220sq.km) with several layers of information (such as Outer and Administrative boundaries, Contours, Highways, Major roads, Minor roads, Streets, Rail roads, Water bodies, Drains, Landmarks and Borehole locations) has been generated. GIS database for collating and synthesizing geotechnical data available with different sources and 3-dimensional view of soil stratum presenting various geotechnical parameters with depth in appropriate format has been developed. In the context of prediction of reduced level of rock (called as “engineering rock depth” corresponding to about Vs > 700 m/sec) in the subsurface of Bangalore and their spatial variability evaluated using Artificial Neural Network (ANN). Observed SPT ‘N’ values are corrected by applying necessary corrections, which can be used for engineering studies such as site response and liquefaction analysis. Site characterization has also been carried out using measured shear wave velocity with the help of shear wave velocity survey using MASW. MASW (Multichannel Analysis of Surface Wave) is a geophysical method, which generates a shear-wave velocity (Vs) profile (i.e., Vs versus depth) by analyzing Raleigh-type surface waves on a multichannel record. MASW system consisting of 24 channels Geode seismograph with 24 geophones of 4.5 Hz capacity were used in this investigation. The shear wave velocity of Bangalore subsurface soil has been measured and correlation has been developed for shear wave velocity (Vs) with the standard penetration tests (SPT) corrected ‘N’ values. About 58 one-dimensional (1-D) MASW surveys and 20 two-dimensional (2-D) MASW surveys has been carried out with in 220 sq.km Bangalore urban area. Dispersion curves and shear velocity 1-D and 2-D have been evaluated using SurfSeis software. Using 1-dimensional shear wave velocity, the average shear wave velocity of Bangalore soil has been evaluated for depths of 5m, 10m, 15m, 20m, 25m and 30m (Vs30) depths. The sub soil classification has been carried out for local site effect evaluation based on average shear wave velocity of 30m depth (Vs30) of sites using NEHRP (National Earthquake Hazard Research Programme) and IBC (International Building Code) classification. Bangalore falls into site class D type of soil. Mapping clearly indicates that the depth of soil obtained from MASW is closely matching with the soil layers in the bore logs. The measured shear wave velocity at 38 locations close to SPT boreholes, which are used to generate the correlation between the shear wave velocity and corrected ‘N’ values using a power fit. Also, developed relationship between shear wave velocity and corrected ‘N’ values corresponds well with the published relationships of Japan Road Association. Bangalore city, a fast growing urban center, with low to moderate earthquake history and highly altered soil structure (due to large reclamation of land) is been the focus of this work. There were over 150 lakes, though most of them are dried up due to erosion and encroachments leaving only 64 at present in an area of 220 sq km. In the present study, an attempt has been made to assess the site response using geotechnical, geophysical data and field studies. The subsurface profiles of the study area within 220sq.km area was represented by 170 geotechnical bore logs and 58 shear wave velocity profiles obtained by MASW survey. The data from these geotechnical and geophysical technique have been used to study the site response. These soil properties and synthetic ground motions for each borehole locations are further used to study the local site effects by conducting one-dimensional ground response analysis using the program SHAKE2000. The response and amplification spectrum have been evaluated for each layer of borehole location. The natural period of the soil column, peak spectral acceleration and frequency at peak spectral acceleration of each borehole has been evaluated and presented as maps. Predominant frequency obtained from both methods is compared; the correlation between corrected SPT ‘N’ value and low strain shear modulus has been generated. The noise was recorded at 54 different locations in 220sq.km area of Bangalore city using L4-3D short period sensors (CMG3T) equipped with digital data acquisition system. Predominant frequency obtained from ground response studies and microtremor measurement is comparable. To study the liquefaction hazard in Bangalore, the liquefaction hazard assessment has been carried out using standard penetration test (SPT) data and soil properties. Factor of Safety against liquefaction of soil layer has been evaluated based on the simplified procedure of Seed and Idriss (1971) and subsequent revisions of Seed et al (1983, 1985), Youd et al (2001) and Cetin et al (2004). Cyclic Stress Ratio (CSR) resulting from earthquake loading is calculated by considering moment magnitude of 5.1 and amplified peak ground acceleration. Cyclic Resistant Ratio (CRR) is arrived using the corrected SPT ‘N’ values and soil properties. Factor of safety against liquefaction is calculated using stress ratios and accounting necessary magnitude scaling factor for maximum credible earthquake. A simple spread sheet was developed to carryout the calculation for each bore log. The factor of safety against liquefaction is grouped together for the purpose of classification of Bangalore (220 sq. km) area for a liquefaction hazards. Using 2-D base map of Bangalore city, the liquefaction hazard map was prepared using AutoCAD and Arc GIS packages. The results are grouped as four groups for mapping and presented in the form of 2-dimensional maps. Liquefaction possibilities are also assessed conducting laboratory cyclic triaxial test using undisturbed soil samples collected at few locations.
37

An integrated model for disaster risk assessment for local government in South Africa / Maliga Reddy

Reddy, Maliga January 2010 (has links)
The intensifying nature and extent of disasters together with the associated devastation and astronomical costs required to manage the rippling effects of disasters, enunciates the national and international focus on disaster risk reduction. Further the ever evolving and complex dynamics of risk as the decisive contributor to disasters has heightened the urgency to pursue effective disaster risk assessment as a prerequisite to inform the disaster risk management planning and disaster risk reduction intervention processes. A structured and systematic approach to disaster risk assessment assists in maintaining rigour thus promoting the quality and validity of the process and its outcomes. Appropriate models serve as valuable tools in enabling this methodological perspective to undertake disaster risk assessment. The nonexistence of an appropriate disaster risk assessment model in South Africa has initiated the emphasis and purpose of this study thereby underscoring the critical need for the development of an effective, holistic and integrated disaster risk assessment model for local government in South Africa. In spear heading the process towards the development of an appropriate disaster risk assessment model, the research commenced with establishing and asserting the fundamental link between disaster risk assessment and disaster risk reduction as an avenue to contextualise and ground the key issues in effective disaster risk reduction. The exploratory analysis engaged in presenting a theoretical construct of disaster risk assessment examined the core components informing the disaster risk assessment process. This discussion led to the comparative review of three disaster risk assessment models viz the Community-Wide Vulnerability and Capacity Assessment (CVCA) Model, the Community-Based Risk Reduction Model and the South African Disaster Risk Assessment Model interrogating the significant characteristics, structure and application of the models. The results of the comparison of the above three models provided the necessary insight for the development of the disaster risk assessment model for local government in South Africa. Further influenced by the outcomes of the applied research on the critical analysis of the current disaster risk assessment practice within the four selected municipalities representing local government in South Africa; viz eThekwini Metropolitan, Ekurhuleni Metropolitan, Bojanala District and Stellenbosch local Municipalities. Through the data coding, classification and interpretive process, constructive and correlated research findings were immanent guiding the final development of the integrated disaster risk assessment model for local government in South Africa. / Thesis (Ph.D. (Public Management and Administration))--North-West University, Potchefstroom Campus, 2012
38

An integrated model for disaster risk assessment for local government in South Africa / Maliga Reddy

Reddy, Maliga January 2010 (has links)
The intensifying nature and extent of disasters together with the associated devastation and astronomical costs required to manage the rippling effects of disasters, enunciates the national and international focus on disaster risk reduction. Further the ever evolving and complex dynamics of risk as the decisive contributor to disasters has heightened the urgency to pursue effective disaster risk assessment as a prerequisite to inform the disaster risk management planning and disaster risk reduction intervention processes. A structured and systematic approach to disaster risk assessment assists in maintaining rigour thus promoting the quality and validity of the process and its outcomes. Appropriate models serve as valuable tools in enabling this methodological perspective to undertake disaster risk assessment. The nonexistence of an appropriate disaster risk assessment model in South Africa has initiated the emphasis and purpose of this study thereby underscoring the critical need for the development of an effective, holistic and integrated disaster risk assessment model for local government in South Africa. In spear heading the process towards the development of an appropriate disaster risk assessment model, the research commenced with establishing and asserting the fundamental link between disaster risk assessment and disaster risk reduction as an avenue to contextualise and ground the key issues in effective disaster risk reduction. The exploratory analysis engaged in presenting a theoretical construct of disaster risk assessment examined the core components informing the disaster risk assessment process. This discussion led to the comparative review of three disaster risk assessment models viz the Community-Wide Vulnerability and Capacity Assessment (CVCA) Model, the Community-Based Risk Reduction Model and the South African Disaster Risk Assessment Model interrogating the significant characteristics, structure and application of the models. The results of the comparison of the above three models provided the necessary insight for the development of the disaster risk assessment model for local government in South Africa. Further influenced by the outcomes of the applied research on the critical analysis of the current disaster risk assessment practice within the four selected municipalities representing local government in South Africa; viz eThekwini Metropolitan, Ekurhuleni Metropolitan, Bojanala District and Stellenbosch local Municipalities. Through the data coding, classification and interpretive process, constructive and correlated research findings were immanent guiding the final development of the integrated disaster risk assessment model for local government in South Africa. / Thesis (Ph.D. (Public Management and Administration))--North-West University, Potchefstroom Campus, 2012
39

Characterization of Impulse Noise and Hazard Analysis of Impulse Noise Induced Hearing Loss using AHAAH Modeling

Wu, Qing 01 August 2014 (has links)
Millions of people across the world are suffering from noise induced hearing loss (NIHL), especially under working conditions of either continuous Gaussian or non-Gaussian noise that might affect human's hearing function. Impulse noise is a typical non-Gaussian noise exposure in military and industry, and generates severe hearing loss problem. This study mainly focuses on characterization of impulse noise using digital signal analysis method and prediction of the auditory hazard of impulse noise induced hearing loss by the Auditory Hazard Assessment Algorithm for Humans (AHAAH) modeling. A digital noise exposure system has been developed to produce impulse noises with peak sound pressure level (SPL) up to 160 dB. The characterization of impulse noise generated by the system has been investigated and analyzed in both time and frequency domains. Furthermore, the effects of key parameters of impulse noise on auditory risk unit (ARU) are investigated using both simulated and experimental measured impulse noise signals in the AHAAH model. The results showed that the ARUs increased monotonically with the peak pressure (both P+ and P-) increasing. With increasing of the time duration, the ARUs increased first and then decreased, and the peak of ARUs appeared at about t = 0.2 ms (for both t+ and t-). In addition, the auditory hazard of experimental measured impulse noises signals demonstrated a monotonically increasing relationship between ARUs and system voltages.
40

Engineering Approach To Seismic Hazard Estimation Of North Eastern Region Of India

Rahman, Tauhidur 01 1900 (has links) (PDF)
Selecting the design ground motion parameters for future earthquakes is a challenging task in earthquake engineering. The intensity of ground shaking depends on the physics of the earthquake process, the seismic wave characteristics, damping and density of the elastic medium. The important parameters commonly used in engineering application are Peak Ground Acceleration (PGA) and response spectrum. This thesis addresses the question of how the above parameters can be rationally estimated for a very highly Seismic zone like North Eastern Region of India (NERI). A detailed literature review and necessity of engineering seismic hazard estimation for NERI is presented in Chapter 1.The geological and seismotectonic setup of NERI has been described. The seismic status of NERI has also been discussed in this chapter. In Chapter 2, three region specific seismological model parameters namely stress drop, quality factor and soil (kappa factor) parameters are estimated. These earthquake model parameters represent the source, path and site parameters respectively. Reliable estimates of these parameters for NERI have been presented here for the first time. The model parameters are computed for this region from time histories of past earthquake records. These parameters are used in developing reliable ground motion attenuation relation for NERI. In chapter 3, the thesis proposes a new attenuation relation for ground motion at the bedrock level for NERI. This region has very few recorded strong motion data though it has experienced more than 2000 earthquakes in the past 600 years. Attenuation relations for PGA and 5% damping Spectral acceleration(Sa) have been developed for NERI by stochastic simulation of ground motion based on the seismological model of Boore (1983, 2003). Seismological model parameters namely stress drop, quality factor and kappa factor calculated in chapter 2 are used in simulation of ground motion samples. Twenty thousand ground motion samples are simulated for different range of magnitudes and hypocentral distances. These simulated ground motion samples are used to derive attenuation relation using two stage regression analyses. The developed regional attenuation relation is validated with available recorded data. In chapter 4, the attenuation relation developed in the previous chapter is utilized to carry out Probabilistic Seismic Hazard Analysis (PSHA) for two important cities in NERI. Seismic hazard for 100, 500 and 2500 year return period for Guwahati and Shillong cities has been calculated considering all the seismotectonic sources within 300 'km radius around these two cities. Limited PSHA results are presented for eight important cities namely Aizawl, Agartala, Silchar, Karimganj, Jorhat, Itanagar, Kohima and Imphal of NERI corresponding to faults within the boundaries of India. Earthquake hazard microzonation maps at the bedrock level for a region of 200 km X 200 km centered around Guwahati city have been prepared in this chapter. In chapter 5, the results of chapter 3 and 4 are further used to compute city level hazard for Guwahati accounting for local site effects. For studying soil effects borehole data from 508 sites have been collected. Shear wave velocity has been estimated empirically. Based on this the city is divided in to four broad zones. PSHA has been carried out for the sites including the effect of soil layering. For routine design of structures, PGA and the response spectrum are sufficient. However, for very important structures such as bridges, dams and industrial plants ground motion histories are required in time domain. In chapter 6, the ground motion time histories for high magnitude earthquakes in NERI are simulated based on record of small events using Empirical Green's function (EGF) approach. Simulated ground motion samples valid for Assam Valley region, Shillong Plateau region and Eastern Himalayan region corresponding to magnitude Mw= 8.5 are presented. Similarly simulated ground motion records applicable for Arakan Yoma Belt region corresponding to magnitude Mw= 8.0 are presented. Also, simulated ground motion samples valid for Surma Valley region corresponding to magnitude Mw= 7.5 are presented. In the present study, simulated high magnitude strong motion records obtained by EGF approach have been compared with those obtained from the attenuation relation developed in chapter3. A summary of the work done in this thesis and a few suggestions for further research are presented in chapter 7. The data of past earthquakes used in this thesis for hazard analysis is presented in the Appendix.

Page generated in 0.093 seconds