• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Tissue Slices from Adult Mammalian Hearts as a Model for Pharmacological Drug Testing

Bussek, Alexandra, Wettwer, Erich, Christ, Torsten, Lohmann, Horst, Camelliti, Patrizia, Ravens, Ursula 20 March 2014 (has links) (PDF)
Aim: Isolated papillary muscles and enzymatically dissociated myocytes of guinea-pig hearts are routinely used for experimental cardiac research. The aim of our study is to investigate adult mammalian ventricular slices as an alternative preparation. Method: Vibratome cut ventricular slices (350 μm thick) were examined histologically and with 2-photon microscopy for fibre orientation. Intracellular action potentials were recorded with conventional glass microelectrodes, extracellular potentials were measured with tungsten platinum electrodes and multi-electrode arrays (MEA). Results: Dominant direction of fibre orientation was absent in vertical and horizontal transmural slices, but was longitudinal in tangential slices. Control action potential duration (APD90, 169.9 ± 4 ms) and drug effects on this parameter were similar to papillary muscles. The L-type Ca-channel blocker nifedipine shortened APD90 with a half maximal effective concentration (EC50) of 4.5 μM. The IKr blocker E4031 and neuroleptic drug risperidone prolonged APD90 with EC50 values of 31 nM and 0.67 μM, respectively. Mapping field potentials on multi-electrode arrays showed uniform spread of excitation with a mean conduction velocity of 0.47 m ⋅ s-1. Conclusion: Slices from adult mammalian hearts could become a useful routine model for electrophysiological and pharmacological research. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
22

Mechanics and material properties of the heart using an anatomically accurate mathematical model

Nash, Martyn January 1998 (has links)
Global and regional mechanics of the cardiac ventricles were investigated using an anatomicallyaccurate computational model formulated from concise mathematical descriptions ofthe left and right ventricular wall geometries and the non-homogeneous laminar microstructureof cardiac muscle. The finite element method for finite deformation elasticity was developedfor the analysis and included specialised coordinate systems, interpolation schemesand parallel processing techniques for greater computational efficiency.The ventricular mechanics model incorporated the fully orthotropic pole-zero constitutivelaw, based on the three-dimensional architecture of myocardium, to account for the nonlinearmaterial response of resting cardiac muscle, relative to the three anatomically relevant axes.A fibre distribution model was introduced to reconcile some of the pole-zero constitutiveparameters with direct mechanical properties of the tissue (such as the limiting strainsestimated from detailed physiological observations of the collagen helices that surroundmyofibres), whilst other parameters were estimated from in-vitro biaxial tension tests onthin sections of myocardium. A non-invasive approach to in-vivo myocardial materialparameter estimation was also developed, based on a magnetic resonance imaging techniqueto effectively tag ventricular wall tissue.The spatially non-homogeneous distribution of myocardial residual strain was accounted forin the ventricular mechanics model using a specialised growth tensor. A simple model of fluidshift was formulated to account for the changes in local tissue volume due to movement ofintramyocardial blood. Contractile properties of ventricular myofibres were approximatedusing a quasi-static relationship between the fibre extension ratio, intracellular calciumconcentration and active fibre stress, and the framework has been developed to include amore realistic model of active myocardial mechanics, which could be coupled to a realisticdescription of the time-varying spread of electrical excitation throughout the ventricularwalls. Simple volumetric cavity models were incorporated to investigate the effects of arterialimpedance on systolic wall mechanics.Ventricular mechanics model predictions of the cavity pressure versus volume relationships,longitudinal dimension changes, torsional wall deformations and regional distributions ofmyocardial strain during the diastolic filling, isovolumic contraction and ejection phasesof the cardiac cycle showed good overall agreement with reported observations derivedfrom experimental studies of isolated and in-vivo canine hearts. Predictions of the spatialdistributions of mechanical stress at end-diastole and end-systole are illustrated.
23

Mechanics and material properties of the heart using an anatomically accurate mathematical model

Nash, Martyn January 1998 (has links)
Global and regional mechanics of the cardiac ventricles were investigated using an anatomicallyaccurate computational model formulated from concise mathematical descriptions ofthe left and right ventricular wall geometries and the non-homogeneous laminar microstructureof cardiac muscle. The finite element method for finite deformation elasticity was developedfor the analysis and included specialised coordinate systems, interpolation schemesand parallel processing techniques for greater computational efficiency.The ventricular mechanics model incorporated the fully orthotropic pole-zero constitutivelaw, based on the three-dimensional architecture of myocardium, to account for the nonlinearmaterial response of resting cardiac muscle, relative to the three anatomically relevant axes.A fibre distribution model was introduced to reconcile some of the pole-zero constitutiveparameters with direct mechanical properties of the tissue (such as the limiting strainsestimated from detailed physiological observations of the collagen helices that surroundmyofibres), whilst other parameters were estimated from in-vitro biaxial tension tests onthin sections of myocardium. A non-invasive approach to in-vivo myocardial materialparameter estimation was also developed, based on a magnetic resonance imaging techniqueto effectively tag ventricular wall tissue.The spatially non-homogeneous distribution of myocardial residual strain was accounted forin the ventricular mechanics model using a specialised growth tensor. A simple model of fluidshift was formulated to account for the changes in local tissue volume due to movement ofintramyocardial blood. Contractile properties of ventricular myofibres were approximatedusing a quasi-static relationship between the fibre extension ratio, intracellular calciumconcentration and active fibre stress, and the framework has been developed to include amore realistic model of active myocardial mechanics, which could be coupled to a realisticdescription of the time-varying spread of electrical excitation throughout the ventricularwalls. Simple volumetric cavity models were incorporated to investigate the effects of arterialimpedance on systolic wall mechanics.Ventricular mechanics model predictions of the cavity pressure versus volume relationships,longitudinal dimension changes, torsional wall deformations and regional distributions ofmyocardial strain during the diastolic filling, isovolumic contraction and ejection phasesof the cardiac cycle showed good overall agreement with reported observations derivedfrom experimental studies of isolated and in-vivo canine hearts. Predictions of the spatialdistributions of mechanical stress at end-diastole and end-systole are illustrated.
24

Mechanics and material properties of the heart using an anatomically accurate mathematical model

Nash, Martyn January 1998 (has links)
Global and regional mechanics of the cardiac ventricles were investigated using an anatomicallyaccurate computational model formulated from concise mathematical descriptions ofthe left and right ventricular wall geometries and the non-homogeneous laminar microstructureof cardiac muscle. The finite element method for finite deformation elasticity was developedfor the analysis and included specialised coordinate systems, interpolation schemesand parallel processing techniques for greater computational efficiency.The ventricular mechanics model incorporated the fully orthotropic pole-zero constitutivelaw, based on the three-dimensional architecture of myocardium, to account for the nonlinearmaterial response of resting cardiac muscle, relative to the three anatomically relevant axes.A fibre distribution model was introduced to reconcile some of the pole-zero constitutiveparameters with direct mechanical properties of the tissue (such as the limiting strainsestimated from detailed physiological observations of the collagen helices that surroundmyofibres), whilst other parameters were estimated from in-vitro biaxial tension tests onthin sections of myocardium. A non-invasive approach to in-vivo myocardial materialparameter estimation was also developed, based on a magnetic resonance imaging techniqueto effectively tag ventricular wall tissue.The spatially non-homogeneous distribution of myocardial residual strain was accounted forin the ventricular mechanics model using a specialised growth tensor. A simple model of fluidshift was formulated to account for the changes in local tissue volume due to movement ofintramyocardial blood. Contractile properties of ventricular myofibres were approximatedusing a quasi-static relationship between the fibre extension ratio, intracellular calciumconcentration and active fibre stress, and the framework has been developed to include amore realistic model of active myocardial mechanics, which could be coupled to a realisticdescription of the time-varying spread of electrical excitation throughout the ventricularwalls. Simple volumetric cavity models were incorporated to investigate the effects of arterialimpedance on systolic wall mechanics.Ventricular mechanics model predictions of the cavity pressure versus volume relationships,longitudinal dimension changes, torsional wall deformations and regional distributions ofmyocardial strain during the diastolic filling, isovolumic contraction and ejection phasesof the cardiac cycle showed good overall agreement with reported observations derivedfrom experimental studies of isolated and in-vivo canine hearts. Predictions of the spatialdistributions of mechanical stress at end-diastole and end-systole are illustrated.
25

Mechanics and material properties of the heart using an anatomically accurate mathematical model

Nash, Martyn January 1998 (has links)
Global and regional mechanics of the cardiac ventricles were investigated using an anatomicallyaccurate computational model formulated from concise mathematical descriptions ofthe left and right ventricular wall geometries and the non-homogeneous laminar microstructureof cardiac muscle. The finite element method for finite deformation elasticity was developedfor the analysis and included specialised coordinate systems, interpolation schemesand parallel processing techniques for greater computational efficiency.The ventricular mechanics model incorporated the fully orthotropic pole-zero constitutivelaw, based on the three-dimensional architecture of myocardium, to account for the nonlinearmaterial response of resting cardiac muscle, relative to the three anatomically relevant axes.A fibre distribution model was introduced to reconcile some of the pole-zero constitutiveparameters with direct mechanical properties of the tissue (such as the limiting strainsestimated from detailed physiological observations of the collagen helices that surroundmyofibres), whilst other parameters were estimated from in-vitro biaxial tension tests onthin sections of myocardium. A non-invasive approach to in-vivo myocardial materialparameter estimation was also developed, based on a magnetic resonance imaging techniqueto effectively tag ventricular wall tissue.The spatially non-homogeneous distribution of myocardial residual strain was accounted forin the ventricular mechanics model using a specialised growth tensor. A simple model of fluidshift was formulated to account for the changes in local tissue volume due to movement ofintramyocardial blood. Contractile properties of ventricular myofibres were approximatedusing a quasi-static relationship between the fibre extension ratio, intracellular calciumconcentration and active fibre stress, and the framework has been developed to include amore realistic model of active myocardial mechanics, which could be coupled to a realisticdescription of the time-varying spread of electrical excitation throughout the ventricularwalls. Simple volumetric cavity models were incorporated to investigate the effects of arterialimpedance on systolic wall mechanics.Ventricular mechanics model predictions of the cavity pressure versus volume relationships,longitudinal dimension changes, torsional wall deformations and regional distributions ofmyocardial strain during the diastolic filling, isovolumic contraction and ejection phasesof the cardiac cycle showed good overall agreement with reported observations derivedfrom experimental studies of isolated and in-vivo canine hearts. Predictions of the spatialdistributions of mechanical stress at end-diastole and end-systole are illustrated.
26

Mechanics and material properties of the heart using an anatomically accurate mathematical model

Nash, Martyn January 1998 (has links)
Global and regional mechanics of the cardiac ventricles were investigated using an anatomicallyaccurate computational model formulated from concise mathematical descriptions ofthe left and right ventricular wall geometries and the non-homogeneous laminar microstructureof cardiac muscle. The finite element method for finite deformation elasticity was developedfor the analysis and included specialised coordinate systems, interpolation schemesand parallel processing techniques for greater computational efficiency.The ventricular mechanics model incorporated the fully orthotropic pole-zero constitutivelaw, based on the three-dimensional architecture of myocardium, to account for the nonlinearmaterial response of resting cardiac muscle, relative to the three anatomically relevant axes.A fibre distribution model was introduced to reconcile some of the pole-zero constitutiveparameters with direct mechanical properties of the tissue (such as the limiting strainsestimated from detailed physiological observations of the collagen helices that surroundmyofibres), whilst other parameters were estimated from in-vitro biaxial tension tests onthin sections of myocardium. A non-invasive approach to in-vivo myocardial materialparameter estimation was also developed, based on a magnetic resonance imaging techniqueto effectively tag ventricular wall tissue.The spatially non-homogeneous distribution of myocardial residual strain was accounted forin the ventricular mechanics model using a specialised growth tensor. A simple model of fluidshift was formulated to account for the changes in local tissue volume due to movement ofintramyocardial blood. Contractile properties of ventricular myofibres were approximatedusing a quasi-static relationship between the fibre extension ratio, intracellular calciumconcentration and active fibre stress, and the framework has been developed to include amore realistic model of active myocardial mechanics, which could be coupled to a realisticdescription of the time-varying spread of electrical excitation throughout the ventricularwalls. Simple volumetric cavity models were incorporated to investigate the effects of arterialimpedance on systolic wall mechanics.Ventricular mechanics model predictions of the cavity pressure versus volume relationships,longitudinal dimension changes, torsional wall deformations and regional distributions ofmyocardial strain during the diastolic filling, isovolumic contraction and ejection phasesof the cardiac cycle showed good overall agreement with reported observations derivedfrom experimental studies of isolated and in-vivo canine hearts. Predictions of the spatialdistributions of mechanical stress at end-diastole and end-systole are illustrated.
27

Automatická segmentace periodického pohybu srdečního svalstva v ultrazvukovém záznamu / Automatic Segmentation of Cardiac Tissue Movement from Ultrasound Record

Munzar, Milan January 2015 (has links)
This thesis describes design and implementation of method, which determines beginning of heart beats in echocardiographic record. Design of this method is built around pyramidal Lucas-Kanade algorithm and fast Fourier transform. This method is implemented in C++ language with OpenCV and FFTW libraries. Analysis of the implementation has shown, that this method is sensitive to anomalies in echocardiographic record. This method is developed as a part of the project for an analysis of echocardiographic records for st. Anna hospital at Brno.
28

Functional in vivo characterization of Neprilysin as a central regulator of insulin signaling and muscle contraction in Drosophila melanogaster

Schiemann, Ronja Thea 14 October 2022 (has links)
Peptides play pivotal roles in the regulation of various physiological processes. As neuropeptides or peptide hormones, they can bind to a range of receptors and thereby trigger the activation of different pathways, including insulin signaling. Another central functionality is facilitated by the action of the as regulins summarized transmembrane micropeptides. By binding to the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), the regulins control Ca2+ homeostasis and muscle contraction. With the ongoing identification of novel modulatory micropeptides encoded by small open reading frames, the urgency to understand peptide-dependent regulatory networks rises. In this regard, especially impact and physiological relevance exerted by the enzymatic inactivation of the mature, biologically active peptides are far from completely understood. Neprilysins are metalloendopeptidases expressed throughout the animal kingdom. Based on their broad substrate specificity, the activity of neprilysins is crucial for the modulation of multiple peptide-dependent processes. This work aimed to identify new peptide substrates of the Drosophila melanogaster Neprilysin 4 (Nep4) and investigate the enzyme's physiological impact on the affected regulatory mechanisms. The first part of the work could identify 16 novel Nep4 peptide substrates that play essential roles in insulin signaling and the regulation of food intake: allatostatin A1-A4, adipokinetic hormone, corazonin, diuretic hormone 31, drosulfakinin 1 and 2, leucokinin, two short neuropeptide F peptides, and tachykinin 1-4. Thereby, aberrant expression of Nep4 leads to severe phenotypes linked to misregulation of insulin signaling, including reduced body size and weight, compromised food intake, and a characteristic shift in metabolomic composition. To further investigate and understand the complex functionality of the newly discovered Nep4 substrates, these peptides were tested for their ability to modulate the Drosophila heartbeat. A combined in vitro/in vivo screen revealed that the tested substrates exert chronotropic as well as inotropic effects, rendering the peptides as essential novel modulators of the heartbeat in Drosophila. The main project of this thesis was based on the initial finding that animals with Nep4 overexpression exhibit severe impairments of body wall muscle and heart functionality. By applying various experiments, including analyses of muscle and heart contraction, measurement of Ca2+ transients, pull-down studies, STED super-resolution microscopy, and mass spectrometry, Neprilysin 4 was identified as a novel modulator of SERCA activity. The molecular underpinning of this regulatory mechanism is the Nep4 mediated cleavage and inactivation of Drosophila SERCA-inhibitory Sarcolamban micropeptides SCLA and SCLB. Strikingly, cleavage experiments using the mammalian neprilysin and apparent colocalization of Neprilysin and SERCA in human heart tissue indicate evolutionary conservation of this mechanism. In summary, this work could identify a range of so far unknown Nep4 substrates and thereby point out the critical roles these class of enzymes plays in insulin signaling as well as the physiology of muscle and heart contraction.
29

Tissue Slices from Adult Mammalian Hearts as a Model for Pharmacological Drug Testing

Bussek, Alexandra, Wettwer, Erich, Christ, Torsten, Lohmann, Horst, Camelliti, Patrizia, Ravens, Ursula January 2009 (has links)
Aim: Isolated papillary muscles and enzymatically dissociated myocytes of guinea-pig hearts are routinely used for experimental cardiac research. The aim of our study is to investigate adult mammalian ventricular slices as an alternative preparation. Method: Vibratome cut ventricular slices (350 μm thick) were examined histologically and with 2-photon microscopy for fibre orientation. Intracellular action potentials were recorded with conventional glass microelectrodes, extracellular potentials were measured with tungsten platinum electrodes and multi-electrode arrays (MEA). Results: Dominant direction of fibre orientation was absent in vertical and horizontal transmural slices, but was longitudinal in tangential slices. Control action potential duration (APD90, 169.9 ± 4 ms) and drug effects on this parameter were similar to papillary muscles. The L-type Ca-channel blocker nifedipine shortened APD90 with a half maximal effective concentration (EC50) of 4.5 μM. The IKr blocker E4031 and neuroleptic drug risperidone prolonged APD90 with EC50 values of 31 nM and 0.67 μM, respectively. Mapping field potentials on multi-electrode arrays showed uniform spread of excitation with a mean conduction velocity of 0.47 m ⋅ s-1. Conclusion: Slices from adult mammalian hearts could become a useful routine model for electrophysiological and pharmacological research. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0695 seconds