• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Influences of Structure Size and Material Property of Package on Heat Transfer Efficiency

Pan, Jyun-Ruei 02 July 2012 (has links)
Currently the trend of electronic product development is to ward ¡§light and thin, multi-functional, high density and durability¡¨. When the microelectronic chips tend to be high power, high density and high speed, the rapid increase of heat in a reduced unit area of package size, will lead to failure of electronic products. The contents of thesis is to find out the dominant factors in heat transfer by changing the geometries and material properties of QFN and BGA packages. It also aims to achieve the beat the thermal performance by reducing the probability of failure. In industries it needs a lot of cost and time in experiment work due to the changes of size and materials. Herein, the softwares of ANSYS and ICEPAK are adopted to model the QFN and BGA packages with the statistical experimental design of Taguchi method L18 (21¡Ñ37) orthogonal array setting parameters and obtain the degree of effect for each factor. Eventually, we use the analysis of variance ANOVA to obtain the contribution of each factor and to identify the significant degree for various parameters by variance error integration. From the results the die attach thermal conductivity affects the contribution of thermal performance up to 81.46% for QFN package in comparison with other controlling factors of high significance and high impact effects. Die attach thermal conductivity between 0.5 W/m•k and 1.5 W/m•k the Tj declines much larger than that between 1.5 W/m•k and 8 W/m•k. Die /PKG area ratio affects the contribution of the thermal performance to 64.24% and increasing Die /PKG area ratio can reduce the Tj for BGA package. The significant effect is also higher than other factors. However, the contribution of substrate layers is 18.83% at 99% confidence level.

Page generated in 0.0782 seconds