• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 21
  • 20
  • 5
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 165
  • 55
  • 52
  • 45
  • 42
  • 41
  • 39
  • 37
  • 36
  • 31
  • 29
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation of vacuum membrane distillation process for desalination with Aspen Plus

Cao, W., Mujtaba, Iqbal M. 23 December 2014 (has links)
Yes / This paper presents a simulation study of vacuum membrane distillation (VMD) for desalination. A simulation model was built on Aspen Plus® platform as user defined unit operation for VMD module. A simplified mathematical model was verified and the analysis of process performance based on simulation was also carried out. Temperature and concentration polarization effects are significant in the conditions of higher feed temperature and/or vacuum pressure. The sign of difference of the vapour pressures between at the membrane interfaces, is a pointer of the vacuum pressure threshold. Increasing the vacuum pressure at lower feed temperature is an effective way to increase the permeate flux and reduce the energy consumption simultaneously.
12

NET ZERO DESICCANT ASSISTED EVAPORATIVE COOLING FOR DATA CENTERS

David Okposio (8844806) 15 May 2020 (has links)
<p>Evaporative cooling is a highly energy efficient alternative to conventional vapor compression cooling system. The sensible cooling effect of evaporative cooling systems is well documented in the literature. Direct evaporative cooling however increases the relative humidity of the air as it cools it. This has made it unsuitable for data centers and other applications where humidity control is important. Desiccant-based dehumidifiers (liquid, solid or composites) absorb moisture from the cooled air to control humidity and is regenerated using waste heat from the data center. This work is an experimental and theoretical investigation of the use of desiccant assisted evaporative cooling for data center cooling according to ASHRAE thermal guidelines, TC 9.9. The thickness (depth) of the cooling pad was varied to study its effect on sensible heat loss and latent heat gain. The velocity of air through the pad was measured to determine its effect on sensible cooling. The flow rate of water over the pad was also varied to find the optimal flow for rate for dry bulb depression. The configuration was such that the rotary desiccant wheel (impregnated with silica gel) comes after the direct evaporative cooler. The rotary desiccant wheel was split in a 1:1 ratio for cooling and reactivation at lower temperatures. The dehumidification effectiveness of a fixed bed desiccant dehumidifier was compared with that of a rotary desiccant wheel and a thermoelectric dehumidifier. A novel condensate recovery system using the Peltier effect was proposed to recover moisture from the return air stream, (by cooling the return air stream below its dew point temperature) thereby optimizing the water consumption of evaporative cooling technology and providing suitable air quality for data center cooling. The moisture recovery unit was found to reduce the mass of water lost through evaporation by an average of fifty percent irrespective of the pad depth.</p> <p> </p>
13

Heat and Mass Transfer in Baled Switchgrass for Storage and Bioconversion Applications

Schiavone, Drew F. 01 January 2016 (has links)
The temperature and moisture content of biomass feedstocks both play a critical role in minimizing storage and transportation costs, achieving effective bioconversion, and developing relevant postharvest quality models. Hence, this study characterizes the heat and mass transfer occurring within baled switchgrass through the development of a mathematical model describing the relevant thermal and physical properties of this specific substrate. This mathematical model accounts for the effect of internal heat generation and temperature-induced free convection within the material in order to improve prediction accuracy. Inclusion of these terms is considered novel in terms of similar biomass models. Two disparate length scales, characterizing both the overall bale structure (global domain) and the individual stems (local domain), are considered with different physical processes occurring on each scale. Material and fluid properties were based on the results of hydraulic conductivity experiments, moisture measurements and thermal analyses that were performed using the constant head method, TDR-based sensors and dual thermal probes, respectively. The unique contributions made by each of these components are also discussed in terms of their particular application within various storage and bioconversion operations. Model validation was performed with rectangular bales of switchgrass (102 x 46 x 36 cm3) stored in an environmental chamber with and without partial insulation to control directional heat transfer. Bale temperatures generally exhibited the same trend as ambient air; although initial periods of microbial growth and heat generation were observed. Moisture content uniformly declined during storage, thereby contributing to minimal heat generation in the latter phases of storage. The mathematical model agreed closely with experimental data for low moisture content levels in terms of describing the temperature and moisture distribution within the material. The inclusion of internal heat generation was found to be necessary for improving the prediction accuracy of the model; particularly in the initial stage of storage. However, the effects of natural convection exhibited minimal contribution to the heat transfer as conduction was observed as the predominate mechanism occurring throughout storage. The results of this study and the newly developed model are expected to enable the maintenance of baled biomass quality during storage and/or high-solids bioconversion.
14

Numerical performance evaluation of a delugeable flat bare tube air-cooled steam condenser bundle

Angula, Ester 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: In this study, one and two-dimensional models are developed for the evaluation of the thermal performance of a delugeable flat tube bundle to be incorporated in the second stage of an induced draft hybrid (dry/wet) dephlegmator (HDWD) of a direct air-cooled steam condenser (ACSC). Both models are presented by a set of differential equations. The one-dimensional model is analysed analytically by using three methods of analysis which are: Poppe, Merkel, and heat and mass transfer analogy. The two-dimensional model is analysed numerically by means of heat and mass transfer analogy method of analysis whereby, the governing differential equations are discretised into algebraic equations using linear upwind differencing scheme. The two-dimensional model’s accuracy is verified through a comparison of the two dimensional solutions to one dimensional solutions. Satisfactory correlation between the one and two-dimensional results is reached. However, there is a slight discrepancy in the solutions, which is mainly due to the assumptions made in one-dimensional model. The effect of tube height, tube pitch, tube width, deluge water mass flow rate, frontal air velocity, steam, and air operating conditions on the heat transfer rate and air-side pressure drop for both wet and dry operating modes are investigated. The long tube height, large tube width, small tube pitch, and high frontal air velocity are found to increase the tube bundle’s performance. However, this performance is associated with a high airside pressure drop. The performance of the deluged flat tube bundle is found to be less sensitive to the changes in the deluge water mass flow rate and air operating conditions. Furthermore, the best configuration of a delugeable flat tube bundle is identified through a comparison to round tube bundle presented by Anderson (2014). The performance of the round tube bundle is found to be around 2 times, and 1.5 times of that of flat tube bundle, when both bundles operate as an evaporative and dry air-cooled condenser respectively. / AFRIKAANSE OPSOMMING: In hierdie studie is een en twee-dimensionele modelle ontwikkel vir die evaluering van die termiese prestasie van 'n benatbare plat buis bundel in die tweede stadium van 'n geïnduseerde ontwerp hibriede (droë / nat ) deflegmator van 'n direkte lugverkoelde stoom kondensator. Beide modelle is aangebied deur 'n stel van differensiaalvergelykings. Die een-dimensionele model is analities ontleed deur die gebruik van drie metodes van analise wat: Poppe, Merkel, en die hitte en massa-oordrag analogie. Die twee-dimensionele model is numeries ontleed deur middel van hitte en massa-oordrag analogie metode van analise waardeur , die regerende differensiaalvergelykings gediskretiseer in algebraïese vergelykings met behulp van lineêre windop differensievorming skema. Die tweedimensionele model se akkuraatheid is geverifieer deur 'n vergelyking van die twee dimensionele oplossings te een dimensionele oplossings. Bevredigende korrelasie tussen die een en twee-dimensionele resultate bereik word. Maar daar is 'n effense verskil in die oplossings, wat is hoofsaaklik te wyte aan die aannames wat gemaak in een-dimensional model. Die effek van buis hoogte, buis toonhoogte, buis breedte, vloed water massa-vloeitempo, frontale lug snelheid, stoom, en in die lug werktoestande op die hitte oordrag snelheid en lug - kant drukval vir beide nat en droë maatskappy modi word ondersoek. Die lang buis hoogte, groot buis breedte, klein buisie toonhoogte, en 'n hoë frontale lug snelheid gevind die buis bundel se prestasie te verhoog. Tog is hierdie prestasie wat verband hou met 'n hoë lug - kant drukval. Die prestasie van die oorstroom plat buis bundel gevind word minder sensitief vir die veranderinge in die vloed water massa-vloeitempo en lug werktoestande. Verder is die beste opset van 'n benatbare plat buis bundel geïdentifiseer deur 'n vergelyking met ronde buis bundel aangebied deur Anderson (2014). Die prestasie van die ronde buis bundel gevind word om 2 keer, en 1.5 keer van daardie plat buis bundel , wanneer beide bundels funksioneer as 'n damp en droë lugverkoelde kondensor onderskeidelik.
15

Declarative modeling of coupled advection and diffusion as applied to fuel cells

Davies, Kevin L. 22 May 2014 (has links)
The goal of this research is to realize the advantages of declarative modeling for complex physical systems that involve both advection and diffusion to varying degrees in multiple domains. This occurs, for example, in chemical devices such as fuel cells. The declarative or equation-based modeling approach can provide computational advantages and is compatible with physics-based, object-oriented representations. However, there is no generally accepted method of representing coupled advection and diffusion in a declarative modeling framework. This work develops, justifies, and implements a new upstream discretization scheme for mixed advective and diffusive flows that is well-suited for declarative models. The discretization scheme yields a gradual transition from pure diffusion to pure advection without switching events or nonlinear systems of equations. Transport equations are established in a manner that ensures the conservation of material, momentum, and energy at each interface and in each control volume. The approach is multi-dimensional and resolved down to the species level, with conservation equations for each species in each phase. The framework is applicable to solids, liquids, gases, and charged particles. Interactions among species are described as exchange processes which are diffusive if the interaction is inert or advective if it involves chemical reactions or phase change. The equations are implemented in a highly modular and reconfigurable manner using the Modelica language. A wide range of examples are demonstrated—from basic models of electrical conduction and evaporation to a comprehensive model of a proton exchange membrane fuel cell (PEMFC). Several versions of the PEMFC model are simulated under various conditions including polarization tests and a cyclical electrical load. The model is shown to describe processes such as electro-osmotic drag and liquid pore saturation. It can be scaled in complexity from 4000 to 32,000 equations, resulting in a simulation times from 0.2 to 19 s depending on the level of detail. The most complex example is a seven-layer cell with six segments along the length of the channel. The model library is thoroughly documented and made available as a free, open-source software package.
16

Effects of membrane structure and operational variables on membrane distillation performance

Karanikola, Vasiliki, Corral, Andrea F., Jiang, Hua, Sáez, A. Eduardo, Ela, Wendell P., Arnold, Robert G. January 2017 (has links)
A bench-scale, sweeping gas, flat-sheet Membrane Distillation (MD) unit was used to assess the importance of membrane architecture and operational variables to distillate production rate. Sweeping gas membrane distillation (SGMD) was simulated for various membrane characteristics (material, pore size, porosity and thickness), spacer dimensions and operating conditions (influent brine temperature, sweep gas flow rate and brine flow rate) based on coupled mass and energy balances. Model calibration was carried out using four membranes that differed in terms of material selection, effective pore size, thickness and porosity. Membrane tortuosity was the lone fitting parameter. Distillate fluxes and temperature profiles from experiments matched simulations over a wide range of operating conditions. Limitations to distillate production were then investigated via simulations, noting implications for MD design and operation. Under the majority of conditions investigated, membrane resistance to mass transport provided the primary limitation to water purification rate. The nominal or effective membrane pore size and the lumped parameter epsilon/delta tau (porosity divided by the product of membrane tortuosity and thickness) were primary determinants of membrane resistance to mass transport. Resistance to Knudsen diffusion dominated membrane resistance at pore diameters <0.3 mu m. At larger pore sizes, a combination of resistances to intra-pore molecular diffusion and convection across the gas-phase boundary layer determined mass transport resistance. Findings are restricted to the module design flow regimes considered in the modeling effort. Nevertheless, the value of performance simulation to membrane distillation design and operation is well illustrated.
17

Numerical and Experimental Study of Heat and Mass Transfer Enhancement using Phase Change Materials

Khakpour, Yasmin 01 May 2014 (has links)
Conventional heat transfer enhancement methods have focused on the surface characteristics of the heat-exchanger. The enhancement of heat transfer through altering the characteristics of the working fluid has become a new subject of interest. Micro-encapsulated phase change material (MEPCM) slurries show improved heat transfer abilities compared to single phase heat transfer fluids such as water due to their higher specific heat values in their phase change temperature range. The present work is a numerical and experimental study towards fundamental understanding of the impact of using PCM on thermal and fluid flow characteristics of different single-phase and two-phase heat transfer applications. The mathematical formulation to represent the presence of single and multi-component MEPCM is developed and incorporated into the numerical model for single-phase and two-phase fluid flow systems. In particular, the use of PCM in its encapsulated form for heat transfer enhancement of liquid flow in the presence of evaporation is explored. In addition, an experimental study is conducted to validate the numerical model in a setting of natural convection flow. Finally, the application of PCM in its layered form on the effectiveness of drying of moist porous materials (e.g. paper) is investigated.
18

Performance analysis for a membrane-based liquid desiccant air dehumidifier: experiment and modeling

Xiaoli Liu (5930732) 16 January 2019 (has links)
<div>Liquid desiccant air dehumidification (LDAD) is a promising substitute for the conventional dehumidification systems that use mechanical cooling. However, the LDAD system shares a little market because of its high installation cost, carryover problem, and severe corrosion problem caused by the conventional liquid desiccant. The research reported in this thesis aimed to address these challenges by applying membrane technology and ionic liquid desiccants (ILDs) in LDAD. The membrane technology uses semi-permeable materials to separate the air and liquid desiccants, therefore, the solution droplets cannot enter into the air stream to corrode the metal piping and degrade the air quality. The ILDs are synthesized salts in the liquid phase, with a large dehumidification capacity but no corrosion problems. In order to study the applicability and performance of these two technologies, both experimental and modeling investigations were made as follows.</div><div>In the study, experimental researches and existing models on the membrane-based LDAD (MLDAD) was extensively reviewed with respects of the characteristics of liquid desiccants and membranes, the module design, the performance assessment and comparison, as well as the modeling methods for MLDAD.</div><div>A small-scale prototype of the MLDAD was tested by using ILD in controlled conditions to characterize its performance in Oak Ridge National Lab. The preliminary experimental results indicated that the MLDAD was able to dehumidify the air and the ILD could be regenerated at 40 ºC temperature. However, the latent effectiveness is relatively lower compared with conventional LDAD systems, and the current design was prone to leakage, especially under the conditions of high air and solution flow rates.</div><div>To improve the dehumidification performance of our MLDAD prototype, the two-dimensional numerical heat and mass transfer models were developed for both porous and nonporous membranes based on the microstructure of the membrane material. The finite element method was used to solve the equations in MATLAB. The models for porous and nonporous membranes were validated by the experimental data available from literature and our performance test, respectively. The validated models were able to predict the performance of the MLDAD module and conduct parametric studies to identify the optimal material selection, design, and operation of the MLDAD.</div><div><br></div>
19

Numerical Simulation of Thermal Comfort and Contaminant Transport in Air Conditioned Rooms

Ho, Son Hong 08 November 2004 (has links)
Health care facilities, offices, as well as workshops and other commercial occupancies, require ventilation and air conditioning for thermal comfort and removal of contaminants and other pollutions. A good design of ventilation and air conditioning provides a healthy and comfortable environment for patients, workers, and visitors. The increasing developments of computational fluid dynamics (CFD) in the recent years have opened the possibilities of low-cost yet effective method for improving HVAC systems in design phase, with less experiment required. This work presents numerical simulations of thermal comfort and contaminant removal for two typical working spaces where these factors are critical: a hospital operating room with various configurations of inlet and outlet arrangements, and an office with two cases of air distribution systems: underfloor and overhead, also with alternative cases. The 2-D simulation approach was employed. Temperature, relative humidity, contaminant concentration, thermal sensation, predicted mean vote (PMV), and contaminant removal factor were computed and used for assessing thermal comfort and contaminant removal characteristics of the office room and operating room. The result shows good agreements with experimental data taken from related literature.
20

The Study of Heat and Mass Transfer In The Generator For an Absorption Air Conditioning System

Hsu, Yu-lien 07 August 2012 (has links)
This thesis is aimed to study the heat and mass transfer performance of a generator for the absorption cooling system. Both aqueous lithium bromide (LiBr) and lithium chloride (LiCl) solutions are studied. The generator inlet concentration and outlet concentration are set to 55% and 60%, respectively, for aqueous lithium bromide solution, and 40% and 45%, respectively, for aqueous lithium chloride solution. Therefore, the system of falling film desorption process is studied for the simulation of the generator. A finite-difference method is applied to numerically simulate the heat and mass transfer for a falling film desorption process in the generator. Parameters effects the inlet temperature, the heat source (wall) temperature, and the vapor pressure consistent with the saturation pressure of the condenser, and the solution flow rate are studied. The results of the present study provide important design references for absorption cooling systems.

Page generated in 0.5103 seconds