• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 146
  • 36
  • 25
  • 12
  • 9
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 466
  • 466
  • 204
  • 146
  • 145
  • 137
  • 118
  • 89
  • 83
  • 82
  • 80
  • 74
  • 70
  • 59
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterization of the Ground Thermal Response to Heating by a Deep Vertical Borehole Heat Exchanger

Olfman, Maeir Zalman 13 January 2012 (has links)
This thesis presents an experiment and an analysis that evaluates some of the long-standing assumptions in deep vertical borehole ground heat exchanger (GHX) theory. These assumptions neglect ground heterogeneity and depth variations in GHX output and the ground temperature response (GTR). This thesis describes an apparatus and an experiment that measured the GTR at several depths, times, and at two different horizontal distances from a GHX both during and immediately after its operation. This thesis also reports the temperature response data, which may not be available from other sources in such detail. The experiment showed that the GTR can be highly depth dependant. The analysis involved a parametric study to characterize the GTR by developing an effective computer simulation of the experiment. The analysis showed that ground heterogeneity significantly affected the GTR and the GHX output in this study. Furthermore, this GHX output showed depth and time, dependence.
52

The analysis of an ammonia/water hybrid heat pump in the ethanol production process / by Pieter J.J. Visagie

Visagie, Pieter Johannes Jacobus January 2008 (has links)
Ethanol is a renewable energy source that could decrease society's dependence on fossil fuels, while reducing greenhouse gas emissions. Producing ethanol on a small scale on South African farms could provide farmers with the capability of increasing their profits by reducing their input cost. Ethanol can be directly used as fuel and could supply alternative products to their market. This study evaluated the feasibility of using an ammonia/water hybrid heat pump in the ethanol production process. A model for the material and energy balance of a small scale ethanol plant was simulated, to obtain the requirements to which the hybrid heat pump had to adhere. A two stage hybrid heat pump (TSHHP) was then modelled. It is capable of operating at high temperatures and it has high temperature lift capabilities, which are suitable in the production of ethanol. The results from the model demonstrated that the TSHHP could operate at an average temperature lift of 106°C with a maximum temperature of heat delivery as high as 142°C and cooling as low as 9°C. Simultaneous heating and cooling demand in the ethanol production process can be met with the TSHHP. For the TSHHP model, 120 kW of heating and 65 kW of cooling is supplied while maintaining a COP of 2.1. The model accuracy was also verified against another simulation program. Implementation of the TSHHP into the ethanol plant was then discussed, as well as methods to optimize production by energy management. When compared to conventional heating and cooling systems, it was found that the TSHHP provides a more cost effective and energy efficient way of producing ethanol. The economic evaluation demonstrated that the installation cost of the TSHHP would only be 63% of the price of a conventional system. The main advantage is that the TSHHP uses only 38% of the energy used in a conventional system. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
53

Characterization of the Ground Thermal Response to Heating by a Deep Vertical Borehole Heat Exchanger

Olfman, Maeir Zalman 13 January 2012 (has links)
This thesis presents an experiment and an analysis that evaluates some of the long-standing assumptions in deep vertical borehole ground heat exchanger (GHX) theory. These assumptions neglect ground heterogeneity and depth variations in GHX output and the ground temperature response (GTR). This thesis describes an apparatus and an experiment that measured the GTR at several depths, times, and at two different horizontal distances from a GHX both during and immediately after its operation. This thesis also reports the temperature response data, which may not be available from other sources in such detail. The experiment showed that the GTR can be highly depth dependant. The analysis involved a parametric study to characterize the GTR by developing an effective computer simulation of the experiment. The analysis showed that ground heterogeneity significantly affected the GTR and the GHX output in this study. Furthermore, this GHX output showed depth and time, dependence.
54

The analysis of an ammonia/water hybrid heat pump in the ethanol production process / by Pieter J.J. Visagie

Visagie, Pieter Johannes Jacobus January 2008 (has links)
Ethanol is a renewable energy source that could decrease society's dependence on fossil fuels, while reducing greenhouse gas emissions. Producing ethanol on a small scale on South African farms could provide farmers with the capability of increasing their profits by reducing their input cost. Ethanol can be directly used as fuel and could supply alternative products to their market. This study evaluated the feasibility of using an ammonia/water hybrid heat pump in the ethanol production process. A model for the material and energy balance of a small scale ethanol plant was simulated, to obtain the requirements to which the hybrid heat pump had to adhere. A two stage hybrid heat pump (TSHHP) was then modelled. It is capable of operating at high temperatures and it has high temperature lift capabilities, which are suitable in the production of ethanol. The results from the model demonstrated that the TSHHP could operate at an average temperature lift of 106°C with a maximum temperature of heat delivery as high as 142°C and cooling as low as 9°C. Simultaneous heating and cooling demand in the ethanol production process can be met with the TSHHP. For the TSHHP model, 120 kW of heating and 65 kW of cooling is supplied while maintaining a COP of 2.1. The model accuracy was also verified against another simulation program. Implementation of the TSHHP into the ethanol plant was then discussed, as well as methods to optimize production by energy management. When compared to conventional heating and cooling systems, it was found that the TSHHP provides a more cost effective and energy efficient way of producing ethanol. The economic evaluation demonstrated that the installation cost of the TSHHP would only be 63% of the price of a conventional system. The main advantage is that the TSHHP uses only 38% of the energy used in a conventional system. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
55

Simulation and Validation of a Single Tank Heat Pump Assisted Solar Domestic Water Heating System

Wagar, William Robert January 2013 (has links)
This thesis is a study of an indirect heat pump assisted solar domestic hot water (I-HPASDHW) system, where the investigated configuration is called the Dual Side I-HPASDHW system. The study outlines the development of an Experimental Test Unit (ETU), and focuses on the experimental validation of TRNSYS models. Shortcomings of the system design realized throughout the validation process, as well as weaknesses in the control schemes used to operate the system are also provided. A description of the Dual Side I-HPASDHW system is provided along with the design intent of the system. The corresponding ETU is presented in detail to provide a comprehensive understanding of the ETU’s simulation capabilities. Components of the ETU, such as the heat pump, heat exchanger, and domestic hot water (DHW) tank are characterized in order to provide input data for built-in TRNSYS models, and to develop custom TRNSYS models for the heat pump and heat exchanger. Heat exchanger performance is modelled with a linear correlation, while the heat pump performance is mapped by applying experimental data to three-dimensional surface fitting software. For the purpose of validation, the ETU is used to simulate the performance of the Dual Side I-HPASDHW system under a realistic control scheme. Four full day tests are conducted using data from a fall, winter, and summer day. The full day summer test is repeated with and without electrical backup heating. The TRNSYS model of the Dual Side system is tuned in order to provide the closest match possible between the computer simulation and the measured performance of the ETU. Experimental tests were compared with TRNSYS simulations to reveal some disparity in the results. The majority of simulation error was attributed to inaccuracy in modeling DHW tank temperatures and water circulation patterns. The disparity created by the DHW tank model only resulted in substantial performance deviation when inaccurate DHW temperatures were used directly for vital control decisions. Conclusions were drawn suggesting that the TRNSYS model of the ETU was valid for a majority of operating conditions, often matching experimental tests well within experimental uncertainty. Caution was recommended towards the use of the developed TRNSYS model, where techniques were recommended for tracking and minimizing substantial simulation errors. Several key performance issues affecting the Dual Side I-HPASDHW system were targeted with recommendations for design and control alterations, along with future improvement and optimization studies.
56

Environmental and techno-economic analysis of ground source heat pump systems

Hanova, Jana 11 1900 (has links)
Climate change stabilization requires an unprecedented effort to change our current approach to energy production and consumption. While rising energy prices are drawing increased attention to reducing energy demand, heightened concern about the environmental consequences of fuel choice requires that this demand be met at lower emission levels. In Canada, the realization of commitments to our GHG emission goals entails reducing residential energy use - a sector responsible for close to 20 percent of end-use energy consumption. This study focuses on the energy demand and emission levels of space and water heating, since these two components comprise 76 percent of residential energy demand. Ground source heat pumps (GSHPs) are a technology that provides heating at 25 to 30 percent of the energy consumed by even the most efficient conventional alternatives. GSHPs have been identified as the most energy-efficient, environmentally clean, and cost-effective space conditioning systems available. However, their drawbacks have been high capital costs, and uncertainty about whether the electric power used by heat pumps has higher system-wide emissions. This thesis delineates how adoption of GSHPs in the residential sector can help align Canada’s technology choices with commitments made to the Kyoto Protocol. The manuscripts delineate conditions under which GSHP systems achieve the largest net emission reductions relative natural gas, heating oil, and electric heat counterparts. Electricity generation methods and emissions embodied in inter-provincial and international electricity trade are shown to significantly affect the emission savings achievable through GSHP. The thesis quantifies how relative fuel prices influence annual operating savings that determine how rapidly the technology can achieve payback. This analysis reveals GSHPs to hold significant potential for substantial GHG reductions at a cost savings relative to conventional alternatives; the time horizons for payback are as short as nine years for average-sized homes, and significantly shorter for larger homes.
57

A ground coupled heat pump system with energy storage

Piechowski, Miroslaw Unknown Date (has links)
A Ground Coupled Heat Pump System (GCHP) is a heat pump with or without any thermal storage which uses soil as a heat source or sink. Soil, due to its large thermal capacity and inertia, can serve as a heat source or sink, thus offering relatively constant operation conditions for a heat pump. The soil temperature at a depth of about 2.0m fluctuates slightly around the yearly average air temperature at any given location. This offers a lower and stable sink temperature in the cooling mode operation and a higher and stable source temperature in the heating mode operation. The major consequence of this fact for a GCHP operation is a lower energy consumption as compared with a standard air-source heat pump.
58

Near Field Investigation of Borehole Heat Exchangers

Erol, Selcuk 08 December 2015 (has links)
As an alternative and renewable energy source, the shallow geothermal energy evolving as one of the most popular energy source due to its easy accessibility and availability worldwide, and the ground source heat pump (GSHP) systems are the most frequent applications for extracting the energy from the shallow subsurface. As the heat extraction capacity of the GSHP system applications arises, the design of the borehole heat exchangers (BHE), which is the connected part of the system in the ground, become more important. The backfilling materials of BHEs, particularly, the grout material must provide a suitable thermal contact between the ground and the heat carrier fluid in the high density polyethylene (HDPE) pipes and ensure durability to the induced thermal stresses due to the heat loading. In addition, for the heating purposes of buildings, BHEs immerged in groundwater may be operated below the freezing point of water with anti-freeze mixture in the pipe, leading to freezing-induced ice pressure which may damage the grout.In order to propose a proper grouting for BHEs, the thermo-hydro-mechanical behavior of the grout and its interferences with the adjacent ground conditions must be evaluated in the near field, and the thermal interactions of each BHE in a multi-BHEs field in the long-term operations must also be considered at a further field.Primarily, we have evaluated the performance of various grouting materials, through thermal, hydraulic and mechanical laboratory characterizations. In particular, we have proposed a homemade grout material, with the addition of graphite powder to improve the thermal properties of grout material. In parallel, the characteristics of two different widely used commercial grouting materials (i.e. calcite-based and silica-sand based materials) have been also investigated. In the subsequent study, the heat flow rate per meter of a BHE and the borehole resistance of borehole heat exchangers are assessed experimentally in a 1×1×1 m3 sandbox under, successively, dry sand and fully water-saturated sand conditions. During the operations, the monitored temperatures in the sandbox are in good agreement with analytical predictions. This study demonstrated that the homemade admixture prepared with 5 % natural flake graphite can be considered as an appropriate grout for BHEs regarding to its rheological and thermo-physical properties. Thermally-enhanced grouting can be of significant interest in a high thermal conductivity ground (such as saturated sand) because it minimizes the thermal resistance of the BHE.After characterizing and testing the efficiency of various grout materials, the thermal stresses occurred in BHEs due to heat injection or extraction has been investigated with the analytical solution of hollow cylinder model that is adapted for time-dependent heat loading, the geometry of a BHE, and the thermo-mechanical properties of surrounding ground conditions. Firstly, the hollow cylinder model has been solved for the considered boundary conditions in 2D plane stress. Secondly, the temperature differences at the inner and outer circles of the cylinder is evaluated with the heat line source models for continuous and discontinuous loadings to observe the impact of the heat loading schedule. The developed analytical solution for thermal stress investigation is validated with numerical models. It is demonstrated that the analytical solutions agree well with numerical results for two types of BHE configurations (co-axial and single U-shaped pipes). Furthermore, the calculated maximum stresses are compared with the tensile strength of grout materials obtained from Brazilian tests. It is predicted that thermal contraction of the grout, partially constrained by the surrounding rock, generates tensile stresses that may lead to cracking in the BHE. According to the results, the stiffness of rock has primary role on the developed tensile stresses, and the relationship between the thermal conductivity of the ground and of the grout induces a proportional impact on the magnitude of thermal stresses.Another major concern is the freeze-resistance of the grout materials, when the system is operated for heating purposes. Firstly, we conducted an experimental setup in a small-scale sandbox to understand the behavior of the grout material by evaluating the permeability change during freeze-thaw cycles of a BHE. According to the results, the permeability of grout materials did not change after 10 freeze-thaw cycles due to the thermal transfer with the adjacent soil partially reducing the impact of freezing in the grout material. Therefore, in order to test the freeze-resistance of a BHE, we have investigated the freezing impact of pore water pressure and thermal stress with analytical models and experimental setups on BHEs. For the theoretical approach, an analytical solution has been developed by using the hollow cylinder model that accounts for both the HDPE pipe and the grout material. Firstly, the freezing pore water pressure is adapted to the generalized Hooke’s law equations in 2D plane stress, and secondly the model is solved for the considered boundary conditions. In order to validate the developed model, the experimental setup is conducted in agreement with the geometry of the considered analytical model and the BHE probes are prepared with three different grout materials having large difference in the thermal and hydraulic characteristics (i.e. silica-sand based, calcite based and the homemade enhanced thermally with natural flake graphite powder). According to the experiments for 50 h of freezing operation, the calcite based grout and the homemade grout, having lower permeability and relatively higher porosity, are fractured. In contrast, the silica-sand based grout having higher permeability did not exhibit any damage. Compared with the theoretically obtained results, the observations from the experiments are consistent with the calculated stress results. The effective tangential stress induced by the freezing pore water pressure causes the crack development and agrees with the crack patterns. As a conclusion, the porosity and the permeability play a significant role on the grout failure.In a multi-BHEs field, the thermal interaction between each BHE may have a significant influence on the near-field investigation results in long-term operations. Therefore, in order to complete the near-field investigation, a far-field long-term operation study is required. However, existing analytical solutions for thermal analysis of ground source heat pump (GSHP) systems evaluate temperature change in the carrier-fluid and the surrounding ground in the production period of a single BHE only if a continuous heat load is assigned. In this study, we modified the Green’s function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain both for single and multi-BHEs field. The adapted analytical models for discontinuous heat extraction are verified with numerical finite element code. The comparison results agree well with numerical results both for conduction and advection dominated heat transfer systems, and analytical solutions provide significantly shorter runtime compared to numerical simulations (approx. 1500 times shorter). Furthermore, we investigated the sustainability and recovery aspects of GSHP systems by using proposed analytical models under different hydro-geological conditions. According to the engineering guideline VDI 4640, a linear relationship between thermal conductivity of the ground and the sustainable heat extraction rate is demonstrated for multi-BHEs. In addition, we developed an MATLAB interface for users in which the analytical model can be used easily and more efficiently.In addition, in order to extend the case studies for a ground including several layers, we proposed a finite line source model for BHEs that takes into account conduction/advection/dispersion mechanism in multilayer porous media. Firstly, the anisotropy is added to the moving finite line source model, and we used an existing composite model approach for conductive multilayer ground. The comparison with the numerical model results demonstrates the suitability of the approach. The proposed model can provide a faster solution than classical numerical approaches and help to optimize the heat extraction rate in multilayer media. However, further investigations are required to validate the model with the field measurements. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
59

High resolution time-series modeling of domestic hot water heating systems

Li, Bo 18 October 2011 (has links)
This thesis evaluates domestic water heating systems in conjunction with energy saving technologies such as solar water heating, drain water heat recovery, and heat pump water heating. Five dynamic models are developed using Matlab Simulink® with a time-step of one minute. Using minute resolution hot water flow, hourly solar radiation data and ambient temperature, the performance of various configurations are assessed when operating in Victoria, Kamloops, and Williams Lake, B.C. Twelve different demand profiles on a summer day and winter day are simulated. Some specific metrics, such as conventional energy consumption, system energy factor, and equivalent CO2 emissions are used as the basis of evaluating the system efficiency. Results indicate the potential improvements in system performance over a conventional domestic water heating system in lower conventional energy consumption and lower CO2 emissions when applying any one of the three energy saving technologies mentioned above. For example, on a representative summer day (Day 228) in Victoria with a load profile of a low-use two-person family on a weekday, the system‟s energy factor can be improved from 0.50 to up to 2.84, and the corresponding conventional energy consumption and the CO2 emissions decrease from 9.86 kwh to 1.67 kwh, and 1.77 kg/day to 0.06 kg/day, respectively depending on which energy saving technology is applied. The modeling tool developed in this research can be used to guide the design of domestic water heating systems with various system configurations. / Graduate
60

Environmental and techno-economic analysis of ground source heat pump systems

Hanova, Jana 11 1900 (has links)
Climate change stabilization requires an unprecedented effort to change our current approach to energy production and consumption. While rising energy prices are drawing increased attention to reducing energy demand, heightened concern about the environmental consequences of fuel choice requires that this demand be met at lower emission levels. In Canada, the realization of commitments to our GHG emission goals entails reducing residential energy use - a sector responsible for close to 20 percent of end-use energy consumption. This study focuses on the energy demand and emission levels of space and water heating, since these two components comprise 76 percent of residential energy demand. Ground source heat pumps (GSHPs) are a technology that provides heating at 25 to 30 percent of the energy consumed by even the most efficient conventional alternatives. GSHPs have been identified as the most energy-efficient, environmentally clean, and cost-effective space conditioning systems available. However, their drawbacks have been high capital costs, and uncertainty about whether the electric power used by heat pumps has higher system-wide emissions. This thesis delineates how adoption of GSHPs in the residential sector can help align Canada’s technology choices with commitments made to the Kyoto Protocol. The manuscripts delineate conditions under which GSHP systems achieve the largest net emission reductions relative natural gas, heating oil, and electric heat counterparts. Electricity generation methods and emissions embodied in inter-provincial and international electricity trade are shown to significantly affect the emission savings achievable through GSHP. The thesis quantifies how relative fuel prices influence annual operating savings that determine how rapidly the technology can achieve payback. This analysis reveals GSHPs to hold significant potential for substantial GHG reductions at a cost savings relative to conventional alternatives; the time horizons for payback are as short as nine years for average-sized homes, and significantly shorter for larger homes. / Science, Faculty of / Resources, Environment and Sustainability (IRES), Institute for / Graduate

Page generated in 0.0418 seconds