• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 13
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 90
  • 37
  • 18
  • 18
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

High temperature/high strength discrete fiber reinforced composites

DeFazio, Christian F. January 2007 (has links)
Thesis (M.S.)--Rutgers University, 2007. / "Graduate Program in Civil and Environmental Engineering." Includes bibliographical references (p. 74-76).
82

Laser Surface Alloying of Refractory Metals on Aluminum for Enhanced Corrosion Resistance: Experimental and Computational Approaches

Rajamure, Ravi Shanker 12 1900 (has links)
Aluminum (Al) and its alloys are widely used in various technological applications, mainly due to the excellent thermal conductivity, non-magnetic, ecofriendly, easy formability and good recyclability. However due to the inferior corrosion resistance its applications are hampered in various engineering sectors. Besides, the corrosion related failures such as leakage of gas from pipeline, catastrophic breakdown of bridges and fire accidents in processing plants further puts the human life in jeopardy. Within the United States over $ 400 billion dollars per year are spent over research to understand and prevent the corrosion related failures. Recently, the development of transition metal(TM) aluminides (AlxTMy, where, TM = Mo, W, Ta, Nb, Cr, Zr and V) has received the global attention mainly due to high strength at elevated temperatures, light-weight, excellent corrosion and wear resistance. In light of this, surface modification via laser surface alloying (LSA) is a promising engineering approach to mitigate the corrosion and wear problems. In the present study the attempts are made to study the Al-Mo, Al-W, Al-Nb, and Al-Ta systems as a potential corrosion resistant coatings on aluminum. The refractory metal (Mo, W, Nb, Ta) precursor deposit was spray coated separately on aluminum substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. Microstructural analysis was conducted using scanning electron microscopy and further X-ray diffractometry was carried out to evaluate the various phases evolved during laser surface alloying. Corrosion resistance of laser alloyed coatings were evaluated using open circuit potential, cyclic potentiodynamic polarization, electrochemical impedance spectroscopy measurements were performed in 0.6 M NaCl solution (pH:6.9±0.2, 23˚C). Open circuit potential measurements indicate the more stable (steady state) potential values over long periods after laser surface alloying. Cyclic polarization results indicated reduction in the corrosion current density, enhancement in the polarization resistance, and increase in coating/protective efficiency with increase in laser energy density compared to untreated aluminum. Electrochemical impedance spectroscopy measurements also indicated an increase in charge transfer resistance after laser surface alloying of refractory metals on aluminum. Additionally, first principle calculations of thermodynamic, electronic and elastic properties of intermetallics evolved during LSA were also thoroughly investigated to correlate the corrosion performance of intermetallic coatings with these properties. The present study indicates that novel Al-Mo, Al-W, Al-Nb, and Al-Ta intermetallics has a great potential for light weight structural applications with enhanced corrosion resistance.
83

Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys

Rojhirunsakool, Tanaporn 08 1900 (has links)
Nickel-base superalloys have been emerged as materials for gas turbines used for jet propulsion and electricity generation. The strength of the superalloys depends mainly from an ordered precipitates of L12 structure, so called gamma prime (γ’) dispersed within the disorder γ matrix. The Ni-base alloys investigated in this dissertation comprise both model alloy systems based on Ni-Al-Cr and Ni-Al-Co as well as the commercial alloy Rene N5. Classical nucleation and growth mechanism dominates the γ’ precipitation process in slowed-cooled Ni-Al-Cr alloys. The effect of Al and Cr additions on γ’ precipitate size distribution as well as morphological and compositional development of γ’ precipitates were characterized by coupling transmission electron microscopy (TEM) and 3D atom probe (3DAP) techniques. Rapid quenching Ni-Al-Cr alloy experiences a non-classical precipitation mechanism. Structural evolution of the γ’ precipitates formed and subsequent isothermal annealing at 600 °C were investigated by coupling TEM and synchrotron-based high-energy x-ray diffraction (XRD). Compositional evolution of the non-classically formed γ’ precipitates was determined by 3DAP and Langer, Bar-on and Miller (LBM) method. Besides homogeneous nucleation, the mechanism of heterogeneous γ’ precipitation involving a discontinuous precipitation mechanism, as a function of temperature, was the primary focus of study in case of the Ni-Al-Co alloy. This investigation coupled SEM, SEM-EBSD, TEM and 3DAP techniques. Lastly, solute partitioning and enrichment of minor refractory elements across/at the γ/ γ’ interfaces in the commercially used single crystal Rene N5 superalloy was investigated by using an advantage of nano-scale composition investigation of 3DAP technique.
84

Thermo-mechanical fatigue crack growth of a polycrystalline superalloy

Adair, Benjamin Scott 23 May 2011 (has links)
A study was done to determine the temperature and load interaction effects on the fatigue crack growth rate of polycrystalline superalloy IN100. Temperature interaction testing was performed by cycling between 316°C and 649°C in blocks of 1, 10 and 100 cycles. Load interaction testing in the form of single overloads was performed at 316°C and 649°C. After compiling a database of constant temperature, constant amplitude FCGR data for IN100, fatigue crack growth predictions assuming no load or temperature interactions were made. Experimental fatigue crack propagation data was then compared and contrasted with these predictions. Through the aid of scanning electron microscopy the fracture mechanisms observed during interaction testing were compared with the mechanisms present during constant temperature, constant amplitude testing. One block alternating temperature interaction testing grew significantly faster than the non-interaction prediction, while ten block alternating temperature interaction testing also grew faster but not to the same extent. One hundred block alternating testing grew slower than non-interaction predictions. It was found that as the number of alternating temperature cycles increased, changes in the gamma prime morphology (and hence deformation mode) caused changes in the environmental interactions thus demonstrating the sensitivity of the environmental interaction on the details of the deformation mode. SEM fractography was used to show that at low alternating cycles, 316°C crack growth was accelerated due to crack tip embrittlement caused by 649°C cycling. At higher alternating cycles the 316°C cycling quickly grew through the embrittled crack tip but then grew slower than expected due to the possible formation of Kear-Wilsdorf locks at 649°C. Overload interaction testing led to full crack retardation at 2.0x overloads for both 316°C and 649°C testing. 1.6x overloading at both temperatures led to retarded crack growth whereas 1.3x overloads at 649°C created accelerated crack growth and at 316°C the crack growth was retarded.
85

Thermo-mechanical fatigue crack growth modeling of a nickel-based superalloy

Barker, Vincent Mark 10 May 2011 (has links)
A model was created to predict the thermo-mechanical fatigue crack growth rates under typical engine spectrum loading conditions. This model serves as both a crack growth analysis tool to determine residual lifetime of ageing turbine components and as a design tool to assess the effects of temperature and loading variables on crack propagation. The material used in the development of this model was a polycrystalline superalloy, Inconel 100 (IN-100). The first step in creating a reliable model was to define the first order effects that influence TMF crack growth in a typical engine spectrum. Load interaction effects were determined to be major contributors to lifetime estimates by influencing crack growth rates based upon previous load histories. A yield zone model was modified to include temperature dependent properties that controlled the effects of crack growth retardation and acceleration based upon overloads and underloads, respectively. Multiple overload effects were included in the model to create enhanced retardation compared to single overload tests. Temperature interaction effects were also considered very important due to the wide temperature ranges of turbine engine components. Oxidation and changing temperature effects were accounted for by accelerating crack growth in regions that had been affected by higher temperatures. Constant amplitude crack growth rates were used as a baseline, upon which load and temperature interaction effects were applied. Experimental data of isolated first order effects was used to calibrate and verify the model. Experimental data provided the means to verify that the model was a good fit to experimental results. The load interaction effects were described by a yield zone model, which included temperature dependent properties. These properties were determined experimentally and were essential in the model's development to include load and temperature contributions. Other interesting factors became apparent through testing. It was seen that specific combinations of strain rate and temperature would lead to serrated yielding, discovered to be the Portevin-Le Chatelier effect. This effect manifested itself as enhanced hardening, leading to unstable strain bursts in specimens that cyclically yielded while changing temperature.
86

Investigation of the effect of process parameters on the formation of recast layer in wire-EDM of Inconel 718

Newton, Thomas Russell 15 February 2008 (has links)
Inconel 718 is a high nickel content superalloy possessing high strength at elevated temperatures and resistance to oxidation and corrosion. The non-traditional manufacturing process of wire-electrical discharge machining (EDM) possesses many advantages over traditional machining during the manufacture of Inconel 718 parts. However, certain detrimental effects are also present. The top layer of the machined surface is melted and resolidified to form what is known as the recast layer. This layer demonstrates microstructural differences from the bulk workpiece, resulting in altered material properties. An experimental investigation was conducted to determine the main machining parameters which contribute to recast layer formation in wire-EDM of Inconel 718. It was found that average recast layer thickness increased with energy per spark, peak discharge current, current pulse duration, and open-voltage time and decreased with sparking frequency and table feed rate. Over the range of parameters tested, the recast layer was observed to be between 5 and 10 μm in average thickness, although highly variable in nature. Surface roughness of the cut parts showed an increase with energy per spark. Electron Probe Microanalysis (EPMA) revealed the recast layer to be alloyed with elements from the wire electrode. X-ray diffraction testing showed the residual tensile stresses evident near the cut surface to decrease with energy per spark. Additionally, nano-indentation hardness testing indicated that the recast layer is reduced in hardness and elastic modulus compared to the bulk material. Vibratory tumbling was found to be a moderately effective post-processing tool for recast layer removal when using pre-formed ceramic abrasive media or fine grained aluminum oxide.
87

Proposição de um processo alternativo à fusão via forno VAR para a consolidação de cavacos prensados de zircaloy e estudo do sistema dinâmico do arco elétrico

MUCSI, CRISTIANO S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:51:30Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:08Z (GMT). No. of bitstreams: 1 11327.pdf: 8143325 bytes, checksum: 06d435f8c6f8c7de3f958dc6373bc9fa (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
88

Corrosion fatigue in nickel base alloys for nuclear steam generator applications

Ballinger, Ronald George, 1945- January 1982 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / by Ronald George Ballinger. / Sc.D.
89

Analysis and feedback control of the scanning laser epitaxy process applied to nickel-base superalloys

Bansal, Rohan 08 April 2013 (has links)
Scanning Laser Epitaxy (SLE) is a new layer-by-layer additive manufacturing process being developed in the Direct Digital Manufacturing Laboratory at Georgia Tech. SLE allows for the fabrication of three-dimensional objects with specified microstructure through the controlled melting and re-solidification of a metal powder placed atop a base substrate. This dissertation discusses the work done to date on assessing the feasibility of using SLE to both repair single crystal (SX) turbine airfoils and manufacture functionally graded turbine components. Current processes such as selective laser melting (SLM) are not able to create structures with defined microstructure and often have issues with warping of underlying layers due to the high temperature gradients present when scanning a high power laser beam. Additionally, other methods of repair and buildup have typically been plagued by crack formation, equiaxed grains, stray grains, and grain multiplication that can occur when dendrite arms are separated from their main dendrites due to remelting. In this work, it is shown that the SLE process is capable of creating fully dense, crack-free equiaxed, directionally-solidified, and SX structures. The SLE process, though, is found to be currently constrained by the cumbersome method of choosing proper parameters and a relative lack of repeatability. Therefore, it is hypothesized that a real-time feedback control scheme based upon a robust offline model will be necessary both to create specified defect-free microstructures and to improve the repeatability of the process enough to allow for multi-layer growth. The proposed control schemes are based upon temperature data feedback provided at high frame rate by a thermal imaging camera. This data is used in both PID and model reference adaptive control (MRAC) schemes and drives the melt pool temperature during processing towards a reference melt pool temperature that has been found to give a desired microstructure in the robust offline model of the process. The real-time control schemes will enable the ground breaking capabilities of the SLE process to create engine-ready net shape turbine components from raw powder material.
90

Rapid determination of temperature-dependent parameters for the crystal viscoplasticity model

Smith, Daniel J. 05 April 2011 (has links)
Thermomechanical fatigue life prediction is important in the design of Ni-base superalloy components in gas turbine engines and requires a stress-strain analysis for accurate results. Crystal viscoplasticity models are an ideal tool for this stress-strain analysis of Ni-base superalloys as they can capture not only the anomalous yielding behavior, but also the non-Schmid effect, the strain rate dependence, and the temperature dependence of typically large grained directionally-solidified and single crystal alloys. However, the model is difficult to calibrate even for isothermal conditions because of the interdependencies between parameters meant to capture different but similar phenomena at different length scales, many tied to a particular slip system. The need for the capacity to predict the material response over a large temperature range, which is critical for the simulation of hot section gas turbine components, causes the determination of parameters to be even more difficult since some parameters are highly temperature dependent. Rapid parameter determination techniques are therefore needed for temperature-dependent parameterizations so that the effort needed to calibrate the model is reduced to a reasonable level. Specific parameter determination protocols are established for a crystal viscoplasticity model implemented in ABAQUS through a user material subroutine. Parameters are grouped to reduce interdependencies and a hierarchical path through the groups and the parameters within each group is established. This dual level hierarchy creates a logical path for parameter determination which further reduces the interdependencies between parameters, allowing for rapid parameter determination. Next, experiments and protocols are established to rapidly provide data for calibration of the temperature-dependencies of the viscoplasticity. The amount of data needed to calibrate the crystal viscoplasticity model over a wide temperature range is excessively large due to the number of parameters that it contains which causes the amount of time spent in the experimentation phase of parameter determination to be excessively large. To avoid this lengthy experimentation phase each experiment is designed to contain as much relevant data as possible. This is accomplished through the inclusion of multiple strain rates in each experiment with strain ranges sufficiently large to clearly capture the inelastic response. The experimental and parameter determination protocols were exercised by calibrating the model to the directionally-solidified Ni-bas superalloy DS-CM247LC. The resulting calibration describes the material's behavior in multiple loading orientations and over a wide temperature range of 20 °C to 1050 °C. Several parametric studies illustrate the utility of the calibrated model.

Page generated in 0.1078 seconds