• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 33
  • 33
  • 19
  • 13
  • 12
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Public perception and response to extreme heat events

Porter, Raymond E. 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the United States extreme heat events have grown in size and stature over the past 20 years. Urban Heat Islands exacerbate these extreme heat events leaving a sizable portion of people at risk for heat related fatalities. The evidence of this is seen in the Chicago heat wave of 1995 which killed 500 people over the course of a week and the European heat wave of 2003 which killed 7,000 people in the course of a month. The main guiding questions then become how government and the media can most effectively warn people about the occurrence of extreme heat events? Should extreme heat warnings be issued by T.V., newspaper or by radio? Even if warnings are issued will the population at large still change their behavior? Another possible question is whether people most vulnerable to extreme heat will change their behavior? A survey in 2010 by NASA will be the main basis for this analysis. This survey set out to see how well people in Phoenix, Philadelphia, and Dayton responded to extreme heat alerts by changing their behavior.
32

Spatiotemporal analysis of extreme heat events in Indianapolis and Philadelphia for the years 2010 and 2011

Beerval Ravichandra, Kavya Urs 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Over the past two decades, northern parts of the United States have experienced extreme heat conditions. Some of the notable heat wave impacts have occurred in Chicago in 1995 with over 600 reported deaths and in Philadelphia in 1993 with over 180 reported deaths. The distribution of extreme heat events in Indianapolis has varied since the year 2000. The Urban Heat Island effect has caused the temperatures to rise unusually high during the summer months. Although the number of reported deaths in Indianapolis is smaller when compared to Chicago and Philadelphia, the heat wave in the year 2010 affected primarily the vulnerable population comprised of the elderly and the lower socio-economic groups. Studying the spatial distribution of high temperatures in the vulnerable areas helps determine not only the extent of the heat affected areas, but also to devise strategies and methods to plan, mitigate, and tackle extreme heat. In addition, examining spatial patterns of vulnerability can aid in development of a heat warning system to alert the populations at risk during extreme heat events. This study focuses on the qualitative and quantitative methods used to measure extreme heat events. Land surface temperatures obtained from the Landsat TM images provide useful means by which the spatial distribution of temperatures can be studied in relation to the temporal changes and socioeconomic vulnerability. The percentile method used, helps to determine the vulnerable areas and their extents. The maximum temperatures measured using LST conversion of the original digital number values of the Landsat TM images is reliable in terms of identifying the heat-affected regions.
33

Predicting locations for urban tree planting

King, Steven M. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The purpose of this study was to locate the most suitable blocks to plant trees within Indianapolis, Indiana’s Near Eastside Community (NESCO). LiDAR data were utilized, with 1.0 meter average post spacing, captured by the Indiana Statewide Imagery and LiDAR Program from March 13, 2011 to April 30, 2012, to conduct a covertype classification and identify blocks that have low canopies, high impervious surfaces and high surface temperatures. Tree plantings in these blocks can help mitigate the effects of the urban heat island effect. Using 2010 U.S. Census demographic data and the principal component analysis, block groups with high social vulnerability were determined, and tree plantings in these locations could help reduce mortality from extreme heat events. This study also determined high and low priority plantable space in order to emphasize plantable spaces with the potential to shade buildings; this can reduce cooling costs and the urban heat island, and it can maximize the potential of each planted tree.

Page generated in 0.0631 seconds