Spelling suggestions: "subject:"heattransfer"" "subject:"datatransfer""
671 |
High Temperature Gas to Liquid Metal Foam and Wire Mesh Heat ExchangersRezaey, Reza 26 November 2012 (has links)
Metal foams and wire meshes are open cell structures with low weight and density, high permeability and high thermal conductivity which make them attractive for a wide range of industrial applications involving fluid flow and heat transfer. In this study, the effect of natural convection, radiation and heat transfer enhancement of metal foams and wire meshes of 10 and 40 PPI (pores per inch) heat exchangers were examined and compared for different heat exchanger orientation, coolant flow rate and atmosphere temperature.
Thermal spray coating processes were also used in development of a new class of high temperature stainless steel heat exchangers. Stainless steel wire mesh heat exchangers were prototyped by connecting the tube to the wire mesh using wire arc thermal spray coating. Thermal spray coating provided efficient connections between the wire mesh and the tubes’ outer surface, and has potential to replace expensive brazing or other metal connection techniques.
|
672 |
The Influence of Thermal Barrier Coating Surface Roughness on Spark Ignition Engine Performance and EmissionsMemme, Silvio 21 March 2012 (has links)
The effects on heat transfer of piston crown surface finish and use of a metal based thermal barrier coating (TBC) on the piston crown were studied in an SI engine. Measured engine parameters such as power, fuel consumption, emissions and cylinder pressure were used to identify the effects of the coating and its surface finish. Two piston coatings were tested: a baseline copper coating and a metal TBC. Reducing surface roughness of both coatings increased in-cylinder temperature and pressure as a result of reduced heat transfer through the piston crown. These increases resulted in small improvements in both power and fuel consumption, while also having measurable effect on emissions. Oxides of nitrogen emissions were increased while total hydrocarbon emissions were decreased. Improvements attributed to the TBC were found to be small, but statistically significant. At an equivalent surface finish, the TBC performed better than the baseline copper finish.
|
673 |
Predicting temperature profiles during simulated forest firesEnninful, Ebenezer Korsah 19 September 2006
Below-ground effects during forest fires are some of the important issues forest managers consider when conducting prescribed fire programs. Heat transfer models in soil are needed to predict temperatures in soil during forest fires. Many of the heat transfer models in soil that include the effects of moisture are complex and in most cases do not have very good predictive abilities. Researchers believe that simple heat transfer models in soil that neglect the effects of moisture could have very good predictive abilities.<p>This study presents a one-dimensional numerical model of heat transfer in dry homogenous sand. Both constant and temperature dependent thermal properties of the sand were used in order to determine which had better predictive abilities. The constant thermal properties model was also extended to a model of two-layer dry soil. A computer code written in Fortran was used to generate results from the model. A number of experiments were conducted with dry sand to validate the model. A comparison of the numerical and experimental results indicated that the temperature dependent properties model had better predictive abilities than the constant properties model. The models were found to do a good job of predicting temperature profiles and depth of lethal heat penetration at heat fluxes indicative of forest fires.<p>Experiments were also conducted to determine the effect of moisture on temperature profiles and the depth of lethal heat penetration in sand and the effect of inorganics on the spread rate of smoldering combustion in peat moss. An experimental correlation of the effects of inorganic content on the spread rate of smoldering combustion in peat moss was developed. Additionally, laboratory methods of validating models of heat transfer in soil were developed with the aim of limiting the dependence on full scale testing. Specifically the use of the cone calorimeter for validating numerical models of heat transfer in soil and the responses of forest floor soil and laboratory created soil samples to heat input were compared. The results indicated that the laboratory created soil did a very good job of mimicking the heat response of the forest floor soil with a maximum difference in lethal heat penetration of 4%.
|
674 |
Microfluidic Investigation of Tracer Dye Diffusion in Alumina NanofluidsOzturk, Serdar 1979- 14 March 2013 (has links)
Nanofluids, a new class of fluids engineered by suspending nanometer-sized particles in a host liquid, are offered as a new strategy in order to improve heat and mass transfer efficiency. My research was motivated by previous exciting studies on enhanced mass diffusion and the possibility of tailoring mass transport by direct manipulation of molecular diffusion. Therefore, a microfluidic approach capable of directly probing tracer diffusion between nanoparticle-laden fluid streams was developed. Under conditions matching previously reported studies, strong complexation interactions between the dye and nanoparticles at the interface between fluid streams was observed. When the tracer dye and surfactant were carefully chosen to minimize the collective effects of the interactions, no significant change in tracer dye diffusivity was observed in the presence of nanoparticles.
Next, adapting tracer dyes for studies involving colloidal nanomaterials was explored. Addition of these charged tracers poses a myriad of challenges because of their propensity to disrupt the delicate balance among physicochemical interactions governing suspension stability. Here it was shown how important it is to select the compatible combinations of dye, nanoparticle, and stabilizing surfactant to overcome these limitations in low volume fraction (< 1 vol%) aqueous suspensions of Al2O3 nanoparticles. A microfluidic system was applied as a stability probe that unexpectedly revealed how rapid aggregation could be readily triggered in the presence of local chemical gradients. Suspension stability was also assessed in conjunction with coordinated measurements of zeta potential, steady shear viscosity and bulk thermal conductivity.
These studies also guided our efforts to prepare new refrigerant formulations containing dispersed nanomaterials, including graphene nanosheets, carbon nanotubes and metal oxide and nitride. The influence of key parameters such as particle type, size and volume fraction on the suspension's thermal conductivity was investigated using a standard protocol. Our findings showed that thermal conductivity values of carbon nanotube and graphene nanosheet suspensions were higher than TiO2 nanoparticles, despite some nanoparticles with large particle sizes provided noticeable thermal conductivity enhancements. Significantly, the graphene containing suspensions uniquely matched the thermal conductivity enhancements attained in nanotube suspensions without accompanying viscosity, thus making them an attractive new coolant for demanding applications such as electronics and reactor cooling.
|
675 |
Numerical Modeling of Cased-hole Instability in High Pressure and High Temperature WellsShen, Zheng 1983- 14 March 2013 (has links)
Down-hole damages such as borehole collapse, circulation loss and rock tensile/compressive cracking in the open-hole system are well understood at drilling and well completion stages. However, less effort has been made to understand the instability of cemented sections in High Pressure High Temperature (HPHT) wells. The existing analysis shows that, in the perforation zones, casing/cement is subject to instability, particularly in the presence of cavities. This dissertation focuses on the instability mechanism of casing/cement in the non-perforated zones.
We investigate the transient thermal behavior in the casing-cement-formation system resulting from the movement of wellbore fluid using finite element method. The critical value of down-hole stresses is identified in both wellbore heating and cooling effects. Differently with the heating effect, the strong cooling effect in a cased hole can produce significant tension inside casing/cement.
The confining formation has an obvious influence on the stability of casing/cement. The proposed results reveal that the casing/cement system in the non-homogeneous formation behaves differently from that in homogeneous formation. With this in mind, a three-dimensional layered finite element model is developed to illustrate the casing/cement mechanical behavior in the non-homogeneous formation. The radial stress of cement sheath is found to be highly variable and affected by the contrast in Young’s moduli in the different formation layers. The maximum stress is predicted to concentrate in the casing-cement system confined by the sandstone.
Casing wear in the cased-hole system causes significant casing strength reduction, possibly resulting in the casing-cement tangential collapse. In this study, an approach for calculating the stress concentration in the worn casing with considering temperature change is developed, based on boundary superposition. The numerical results indicate that the casing-cement system after casing wear will suffer from severe tangential instability due to the elevated compressive hoop stress.
Gas migration during the cementing process results from the fluid cement’s inability to balance formation pore pressure. Past experience emphasized the application of chemical additives to reduce or control gas migration during the cementing process. This report presents the thermal and mechanical behaviors in a cased hole caused by created gas channels after gas migration. In conclusion, the size and the number of gas channels are two important factors in determining mechanical instability in a casing-cement system.
|
676 |
Design of an Instrumentation System for a Boundary Layer Transition Wing Glove ExperimentWilliams, Thomas 1987- 14 March 2013 (has links)
Laminar flow control holds major promise for increasing aircraft efficiency and increasing laminar flow over aerodynamic surfaces could decrease drag by up to 30 percent. The Flight Research Lab at Texas A&M University has studied laminar flow over a wing with 30 degrees of leading edge sweep with Discrete Roughness Elements (DREs) installed and has indicated that DREs can be used to increase laminar flow at Reynolds numbers up to 7.5 million at Mach 0.3. A new project, termed SARGE, has been commissioned in conjunction with NASA for studying DREs on a swept wing glove at conditions relevant to jet transports.
The SARGE project must have an instrumentation system capable of accurately measuring flow conditions and transition location on the suction side of the glove. Infrared (IR) thermography has been selected as the primary transition detection tool. A heat transfer analysis has shown that solar radiation will warm the surface of the glove above the adiabatic wall temperature and therefore the laminar region will appear to be warmer. The FLIR SC8000 IR camera has been selected for this application due to its ability to produce high-resolution images in the appropriate IR band.
High quality air data is also required for the experiment. A five-hole probe will be used to measure flow angle and velocity near the glove. This instrument will provide meanflow conditions due to its limited frequency response. High quality pressure transducers coupled with careful probe calibration will allow for differential measurements to be made with an uncertainty of +/- 0.03 degrees. Static pressure ports and high frequency response Kulite transducers will also be employed.
Hotfilm sensors will be used to verify the state of the boundary layer on the glove through spectral analysis. A unique hotfilm array has been proposed that will enable the measurement of traveling wave vectors through a spectral technique. An experiment on the Flight Research Lab's Cessna O-2 to investigate the veracity of this technique has also been suggested.
Thermocouples will also be installed on the glove's surface to monitor temperatures and verify transition location. The layout of the hotfilms and thermocouples is also detailed.
|
677 |
Splashing and Breakup of Droplets Impacting on a Solid SurfaceDhiman, Rajeev 24 September 2009 (has links)
Two new mechanisms of droplet splashing and breakup during impact have been identified and analyzed. One is the internal rupture of spreading droplet film through formation of holes, and the other is the splashing of droplet due to its freezing during spreading. The mechanism of film rupture was investigated by two different methods. In the first method, circular water films were produced by directing a 1 mm diameter water jet onto a flat, horizontal plate for 10 ms. In the second method, films were produced by making 0.6 mm water droplets impact a solid surface mounted on the rim of a rotating flywheel. Substrate wettability was varied over a wide range, including superhydrophobic. In both cases, the tendency to film rupture first increased and then decreased with contact angle. A thermodynamic stability analysis predicted this behavior by showing that films would be stable at very small or very large contact angle, but unstable in between. Film rupture was also found to be promoted by increasing surface roughness or decreasing film thickness. To study the effect of solidification, the impact of molten tin droplets (0.6 mm diameter) on solid surfaces was observed for a range of impact velocities (10 to 30 m/s), substrate temperatures (25 to 200°C) and substrate materials (stainless steel, aluminum and glass) using the rotating flywheel apparatus. Droplets splashed extensively on a cold surface but on a hot surface there was no splashing. Splashing could be completely suppressed by either increasing the substrate temperature or reducing its thermal diffusivity. An analytical model was developed to predict this splashing behavior. The above two theories of freezing-induced splashing and film rupture were combined to predict the morphology of splats typically observed in a thermal spray process. A dimensionless solidification parameter, which takes into account factors such as the droplet diameter and velocity, substrate temperature, splat and substrate thermophysical properties, and thermal contact resistance between the two, was developed. Predictions from the model were compared with a wide range of experimental data and found to agree well.
|
678 |
Gas-liquid flows in adsorbent microchannelsMoore, Bryce Kirk 10 January 2013 (has links)
A study of two the sequential displacement of gas and liquid phases in microchannels for eventual application in temperature swing adsorption (TSA) methane purification systems was performed. A model for bulk fluid displacement in 200 m channels was developed and validated using data from an air-water flow visualization study performed on glass microchannel test sections with a hydraulic diameter of 203 m. High-speed video recording was used to observe displacement samples at two separate channel locations for both the displacement of gas by liquid and liquid by gas, and for driving pressure gradients ranging from 19 to 450 kPa m-1. Interface velocities, void fractions, and film thicknesses were determined using image analysis software for each of the 63 sample videos obtained.
Coupled 2-D heat and mass transfer models were developed to simulate a TSA gas separation process in which impurities in the gas supply were removed through adsorption into adsorbent coated microchannel walls. These models were used to evaluate the impact of residual liquid films on system mass transfer during the adsorption process. It was determined that for a TSA methane purification system to be effective, it is necessary to purge liquid from the adsorbent channel. This intermediate purge phase will benefit the mass transfer performance of the adsorption system by removing significant amounts of residual liquid from the channel and by causing the onset of rivulet flow in the channel. The existence of the remaining dry wall area, which is characteristic of the rivulet flow regime, improves system mass transfer performance in the presence of residual liquid.
The commercial viability of microchannel TSA gas separation systems depends strongly on the ability to mitigate the presence and effects of residual liquid in the adsorbent channels. While the use of liquid heat transfer fluids in the microchannel structure provides rapid heating and cooling of the adsorbent mass, the management of residual liquid remains a significant hurdle. In addition, such systems will require reliable prevention of interaction between the adsorbent and the liquid heat transfer fluid, whether through the development and fabrication of highly selective polymer matrix materials or the use of non-interacting large-molecule liquid heat transfer fluids. If these hurdles can be successfully addressed, microchannel TSA systems may have the potential to become a competitive technology in large-scale gas separation.
|
679 |
Direct Numerical Simulation of Turbulent Dispersion of Buoyant Plumes in a Pressure-Driven channel flow.Fabregat Tomàs, Alexandre 15 December 2006 (has links)
Simulacó numérica directa de la dispersió turbulenta de plomalls amb flotació en un flux en un canal Alexandre Fabregat Tomás, Tarragona, octubre del 2006 1 IntroduccióL'objectiu d'aquest treball és estudiar la dispersió turbulenta de calor en diferents configuracions basades en el canal desenvolupat mitjançant DNS (Direct Numerical Simulations). Aquesta eina ha demostrat ser de gran utilitat a l'hora d'estudiar fluxos turbulents ja que permet, donada una malla computacional capaç de capturar totes les estructures del flux i un esquema que minimitzi els errors i la dissipació numérica, descriure acuradament l'evolució temporal del flux. Permet a més, donada la descripció tridimensional i temporal del flux, determinar amb precisió qualsevol quantitat que seria impossible d'obtenir experimentalment.En el flux en un canal, el fluid esmou entre dues parets planes, llises i paral·leles separades una distància 2d impulsat per un gradient constant mitjà de pressió. El flux s'anomena desenvolupat quan ja no hi ha efectes de regió d'entrada i la única inhomogeneïtat es troba en la direcció normal a la paret. Sota aquestes condicions, les quantitats promitjades esdevenen estacionàries en el temps.En aquest treball s'ha validat el codi computacional mitjançant la reproducció d'algunes configuracions de flux prèviament estudiades per altres autors. Els nous coneixements en l'estudi de la dispersió turbulenta de calor s'han obtingut a l'incloure, en un flux totalment desenvolupat en un canal, una font lineal centrada verticalment que provoca l'aparició d'un plomall amb una temperatura més alta que la del flux del fons i que per tant, al tenir una menor densitat, experimenta flotació i es deflecteix. L'amitjanament temporal del flux permet estudiar les diferents contribucions dels diferents termes rellevants en les equacions de transport.És d'especial interés la comparativa d'aquests resultats amb els corresponents a la formació d'un plomall a partir d'una font lineal d'un escalar passiu.Per altra banda també s'ha estudiat l'eficiència en paral·lel dels mètodes multigrid en la resolució d'equacions de Poisson. Aquestes equacions són d'especial interés ja que apareixen en el càlcul de la pressió i representen un coll d'ampolla en termes de costos computacionals. Aquest mètode numèric ha estat comparat amb els mètodes de gradient conjugat (anteriorment emprats en el codi 3DINAMICS) en la resolució de diferents problemes comparant els costos en termes de temps de CPU i la seua escalabilitat en la màquina multiprocessador de memòria distribuïda del grup de recerca de Mecànica de Fluids de Tarragona.2 Descripció matemàticaUn cop adimensionalitzades mitjançant les escales adequades, les equacions de transport de quantitat de moviment i energia han estat discretitzades sobre una malla desplaçada mitjançant el mètode de volums finits emprant un esquema centrat de segon ordre. La discretització dels termes advectius en els casos amb fonts lineals ha requerit, però, d'un cura especial ja que la no-linealitat d'aquests termes pot provocar oscil·lacions artificials en el camp dels escalars. La difusió numèrica dels mètodes upwind, com el QUICK, ha estat quantificada i comparada amb resultats obtinguts per a esquemes centrats de segon ordre. Les equacions han estat integrades en el temps mitjançant un esquema implícit de segon ordre tipus Crank-Nicholson. També ha estat necessari implementar condicions de sortida per a la temperatura en els casos A i C del tipus no reflectant per tal de garantir la conservació i evitar l'aparició d'estructures artificials en el flux.3 Descripció físicaLa figura 1 presenta un esquema del domini computacional corresponent al canal desenvolupat. De l'esquema es desprén que x, y i z corresponen a les direccions principal del flux, la perpendicular i la normal a les parets respectivament. Les configuracions del flux estudiades es troben resumides a la taula 1 on s'indica la resolució de la xarxa computacional, el nombre de Reynolds (basat en la velocitat de fricció ut) i en el casos amb flotació, el nombre de Grashof, la temperatura de referència i la direcció de flotació (la direcció del vector gravetat).Les dimensions del canal s´on 8pd×2pd×2d en les direccions x, y i z respectivament.En el cas A la temperatura representa un escalar de manera que el plomall format és passiu, és a dir, no hi ha acoblament entre les equacions de quantitat de moviment i energia. A diferència d'aquest, en els casos B i C totes dues equacions queden acoblades pel terme de flotació. Aquest terme apareix quan les diferències de temperatura en el si del fluid generen diferències de densitat. En el cas B, el canal vertical amb convecció mixta, cada paret del canal es troba a una temperatura constant però diferent. El vector gravetat i la direcció del corrent estan alineades de manera que aquesta direcció continua sent homogènia. En la zona propera a la paret calenta la flotació actua en la direcció del corrent imposada pel gradient mitjà de pressió. En canvi, en la zona propera a la paret freda, la flotació s'oposa al moviment del flux.El cas C és similar al cas A però en aquesta ocasió la temperatura no es considera un escalar passiu i per tant la flotació acobla el camp dinàmic amb el de temperatures. El vector gravetat actua en aquest cas en la direcció normal. La inhomogeneïtat en la direcció del flux no permet continuar emprant condicions de contorn periòdiques i per tant, al domini presentat en la figura 1, se li ha acoblat una regió auxiliar a l'entrada on es resolen únicament les equacions de quantitat de moviment. Els camps de velocitat i pressió per a un canal totalment desenvolupat obtinguts en aquest domini auxiliar s'empraran com a condició de contorn a l'entrada del domini de computació. No és necessari cap tipus d'interpolació ja que la resolució del a xarxa d'aquest domini auxiliar és la mateixa que l'emprada en el domini de computació.4 ResultatsEls resultats per a les simulacions presentades en la taula 1 contenen, principalment, els perfils de velocitat i temperatura mitjans així com la intensitat de les fluctuacions. A més, es presenten els perfils de les diferents contribucions dels termes relevants de les equacions de transport amitjanades. Per al cas C, els camps dinàmics i de temperatura no estan desenvolupats. Els perfils mitjans a diferents posicions aigües avall permeten estudiar l'evolució del plomall ascendent a més d'analitzar com la flotació afecta al balanç de les diferents contribucions. La figure 2 presenta el camp mitjà de temperatures per al cas C amb les tres posicions en la direcció principal del flux per a les quals s'han inclòs els perfils.Finalment, es presenten els resultats corresponents a la comparativa entre els diferents solvers per a una equació de Poisson. Tots els mètodes numèrics han es-3Figura 2: Camp mitjà de temperatures per al cas C tat paral·lelitzats mitjançant les llibreries Message Passing Interface. En la figura 3 es presenten com a exemple els resultats (en termes de temps de CPU i speedup) per a la resolució de l'equació de Poisson per al desacoblament de pressió i velocitat en el cas del flux desenvolupat en un canal.Els resultats de speed-up per als diferents mètodes mostren la baixa escalabilitat del solver multigrid comparat amb els altres mètodes del tipus gradient conjugat. La raó radica en les grans necessitats de comunicació d'un algoritme construït sobre un esquema de relaxació tipus SOR. Tanmateix, multigrid és el mètode numèric que requereix menys temps de CPU per concloure la tasca. El factor respecte als mètodes de gradient conjugat pot arribar a ser de 30 i per tant és el millor candidat per a la resolució d'aquests tipus de problemes. / The main goal of this work is to study the turbulent heat transfer in a developed channel flow using Direct Numerical Simulations (DNS). These simulations solve explicitly all the scales present in the turbulent flow so, even for moderate Reynolds numbers, the discretization grids need to be fine enough to capture the smallest structures of the flow and, consequently, DNS demands large computational resources. The flow, driven by a mean constant pressure gradient in the streamwise direction, is confined between two smooth, parallel and infinite walls separated a distance 2d.The turbulent heat transport is studied for three different flow configurations.Some of them are used as benchmark results for this work. The three cases reported can be summarized as:· case A: Scalar plume from a line source in a horizontal channel.· case B:Mixed convection with the gravity vector aligned with the streamwise direction (vertical channel).· case C: Buoyant plume from a line source in a horizontal channel.In addition, preliminary results for a turbulent reacting flow in a fully developed channel are also presented.In the case B heat flux results from a temperature difference between the channel walls. The gravity vector is aligned with the streamwise direction and the Grashof, Reynolds and Prandtl numbers are Gr = 9.6 · 106, Ret = 150 and Pr = 0.71 respectively. Close to the hot wall, buoyancy acts aligned to the flow direction imposed by the mean pressure gradient so velocities are generally increased in comparison with a purely forced convection flow. Oppositely, near the cold wall, buoyancy is opposed to the flow and consequently velocities are decreased.Cases A and C are similar because in both cases a hot fluid is released within a cold background flow through a line source vertically centered in the wall-normal direction located at the inlet. The height of the source is 0.054d. The injected hot fluid disperses forming a hot plume that is convected downstream between the two adiabatic walls of the channel.The difference between cases A and C lies in the fact that for case A heat and momentum are decoupled and temperature acts as an scalar. Advection and diffusion are the only phenomena responsible for the evolution of the plume. On the other hand, in case C, buoyancy couples heat and momentum and, consequently, the plume floats drifting upward as it advances in the channel due to its lower density. In case C, the streamwise direction is not homogenous because of the coupling between heat and momentum. To guarantee developed conditions at the inlet of the channel it has been necessary to attach a buffer domain just before the computational domain. In this buffer domain, the momentum transport equations for a fully developed channel are solved with the same resolution used in the main domain.The results of cases A and B have been used to validate the 3DINAMICS CFD code by comparison with data reported in the literature. This code is written in FORTRAN 90 and parallelized using the Message Passing Interface (MPI-CHlibrary). It uses the second order in time Crank-Nicholson scheme to integrate numerically the transport equations which are discretized spatially using the centered second-order finite volume approach.The analysis of averaged turbulent quantities and the contributions of the different terms of the time-averaged transport equations is used to show how buoyancy affects the turbulent transport of momentum and heat along the channel.Finally, following a similar configuration than that of case A, a chemical reactantA released through line source reacts with a background reactant B following a second order chemical reaction with Damkh¨oler number of 1. Preliminary results for turbulent species transport are also included in this work.Special attention have been devoted to the discretization of the advective terms to avoid non-realistic values of the variables because of the non-linearities of the transport equations. The conservative non-reflecting boundary conditions have been implemented at the outlet to simulate the convected outflow when the streamwise direction can not be considered homogeneous, as in case C. For homogeneous directions, periodic boundary conditions have been used.Large grid resolutions (up to 8 million grid nodes for case C including the buffer region) demand important computational resources. A parallel Multigrid solver has substituted the previous conjugate gradient method to solve the Poisson equation in the pressure calculation. This step was the most expensive in terms of CPU costs. The Multigrid method efficiency has been compared with two different versions of the conjugate gradient approach and it has been demonstrated that this method is the most efficient in terms of CPU time although the current algorithmcan be improved to enhance the scalability inmultiprocessor computers.
|
680 |
Computational Fluid Dynamics Studies in Heat and Mass Transfer Phenomena in Packed Bed Extraction and Reaction Equipment: Special Attention to Supercritical Fluids TechnologyGuardo Zabaleta, Alfredo 01 March 2007 (has links)
El entendimiento de los fenómenos de transferencia de calor y de masa en medios porosos implica el estudio de modelos de transporte de fluidos en la fracción vacía del medio; este hecho es de fundamental importancia en muchos sistemas de Ingeniería Química, tal como en procesos de extracción o en reactores catalíticos. Los estudios de flujo realizados hasta ahora (teóricos y experimentales) usualmente tratan al medio poroso como un medio efectivo y homogéneo, y toman como válidas las propiedades medias del fluido. Este tipo de aproximación no tiene en cuenta la complejidad del flujo a través del espacio vacío del medio poroso, reduciendo la descripción del problema a promedios macroscópicos y propiedades efectivas. Sin embargo, estos detalles de los procesos locales de flujo pueden llegar a ser factores importantes que influencien el comportamiento de un proceso físico determinado que ocurre dentro del sistema, y son cruciales para entender el mecanismo detallado de, por ejemplo, fenómenos como la dispersión de calor, la dispersión de masa o el transporte entre interfaces.La Dinámica de Fluidos Computacional (CFD) como herramienta de modelado numérico permite obtener una visión mas aproximada y realista de los fenómenos de flujo de fluidos y los mecanismos de transferencia de calor y masa en lechos empacados, a través de la resolución de las ecuaciones de Navier - Stokes acopladas con los balances de materia y energía y con un modelo de turbulencia si es necesario. De esta forma, esta herramienta permite obtener los valores medios y/o fluctuantes de variables como la velocidad del fluido, la temperatura o la concentración de una especie en cualquier punto de la geometría del lecho empacado.El objetivo de este proyecto es el de utilizar programas comerciales de simulación CFD para resolver el flujo de fluidos y la transferencia de calor y de masa en modelos bi/tri dimensionales de lechos empacados, desarrollando una estrategia de modelado aplicable al diseño de equipos para procesos de extracción o de reacción catalítica. Como referencia se tomaran procesos de tecnología supercrítica debido a la complejidad de los fenómenos de transporte involucrados en estas condiciones, así como a la disponibilidad de datos experimentales obtenidos previamente en nuestro grupo de investigación. Estos datos experimentales se utilizan como herramienta de validación de los modelos numéricos generados, y de las estrategias de simulación adoptadas y realizadas durante el desarrollo de este proyecto. / An understanding of the heat and mass transfer phenomena in a porous media implies the study of the fluid transport model within the void space; this fact is of fundamental importance to many chemical engineering systems such as packed bed extraction or catalytic reaction equipment. Experimental and theoretical studies of flow through such systems often treat the porous medium as an effectively homogeneous system and concentrate on the bulk properties of the flow. Such an approach neglects completely the complexities of the flow within the void space of the porous medium, reducing the description of the problem to macroscopic average or effective quantities. The details of this local flow process may, however, be the most important factor influencing the behavior of a given physical process occurring within the system, and are crucial to understanding the detailed mechanisms of, for example, heat and mass dispersion and interface transport.Computational Fluid Dynamics as a simulation tool allows obtaining a more approached view of the fluid flow and heat and mass transfer mechanisms in fixed bed equipment, through the resolution of 3D Reynolds averaged transport equations, together with a turbulence model when needed. In this way, this tool permit to obtain mean and fluctuating flow and temperature values in any point of the bed. The goal of this project is to use commercial available CFD codes for solving fluid flow and heat and mass transfer phenomena in two and three dimensional models of packed beds, developing a modeling strategy applicable to the design of packed bed chemical reaction and extraction equipment. Supercritical extraction and supercritical catalytic reaction processes will be taken as reference processes due to the complexity of the transport phenomena involved within this processes, and to the availability of experimental data in this field, obtained in the supercritical fluids research group of this university. The experimental data priory obtained by our research group will be used as validation data for the numerical models and strategies dopted and followed during the developing of the project.
|
Page generated in 0.0605 seconds