Spelling suggestions: "subject:"heattransfer"" "subject:"datatransfer""
691 |
Modeling and Experimental Validation of a Rankine Cycle Based Exhaust WHR System for Heavy Duty Applications / Modellering och experimentell validering av ett Rankinecykelbaserat Waste Heat Recovery-systemCarlsson, Carin January 2012 (has links)
To increase the efficiency of the engine is one of the biggest challenges for heavy vehicles. One possible method is the Rankine based Waste Heat Recovery. Crucial for Rankine based Waste Heat Recovery is to model the temperature and the state of the working fluid. If the state of the working fluid is not determined, not only the efficiency of the system could be decreased, the components of thesystem might be damaged.A Simulink model based on the physical components in a system developed by Scania is proposed. The model for the complete system is validated against a reference model developed by Scania, and the component models are further validated against measurement data. The purpose of the model is to enable model based control, which is not possible with the reference model. The main focus on the thesis is to model the evaporation and condensation to determine state and temperature of the working fluid. The developed model is compared to a reference model with little differences for while stationary operating for both the components and the complete system. The developed model also follows the behavior from measurement data. The thesis shows that two phase modeling in Simulink is possible with models based on the physical components.
|
692 |
Flow Through a Throttle Body : A Comparative Study of Heat Transfer, Wall Surface Roughness and Discharge CoefficientCarlsson, Per January 2007 (has links)
When designing a new fuel management system for a spark ignition engine the amount of air that is fed to the cylinders is highly important. A tool that is being used to improve the performance and reduce emission levels is engine modeling were a fuel management system can be tested and designed in a computer environment thus saving valuable setup time in an engine test cell. One important part of the modeling is the throttle which regulates the air. The current isentropic model has been investigated in this report. A throttle body and intake manifold has been simulated using Computational Fluid Dynamics (CFD) and the influence of surface heating and surface wall roughness has been calculated. A method to calculate the effective flow area has been constructed and tested by simulating at two different throttle plate angles and several pressure ratios across the throttle plate. The results show that both surface wall roughness and wall heating will reduce the mass flow rate compared to a smooth and adiabatic wall respectively. The reduction is both dependent on pressure ratio and throttle plate angle. The effective area has showed to follow the same behaviour as the mass flow rate for the larger simulated throttle plate angle 31 degrees, i.e. an increase as the pressure drop over the throttle plate becomes larger. At the smaller throttle plate angle 21 degrees, the behaviour is completely different and a reduction of the effective area can be seen for the highest pressure drop where a increase is expected. / När ett nytt bränslesystem ska designas till en bensinmotor är det viktigt att veta hur stor mängd luft som hamnar i cylindrarna. Ett verktyg som är på frammarsch för att förbättra prestanda och minska emissioner är modellbaserad simulering. Med hjälp av detta kan ett bränslesystem designas och testas i datormiljö och därigenom spara dyrbar tid som annars måste tillbringas i en motortestcell. En viktig del av denna modellering är spjället eller trotteln vilken reglerar luften. I denna rapport har studier gjort på den nuvarande isentropiska modellen. Ett spjällhus och insugsgrenrör har simulerats med hjälp av Computational Fluid Dynamics (CFD) och påverkan av värme samt ytjämnhet på väggen har beräknats. En metod att beräkna den effektiva genomströmmade arean har konstruerats och testats vid två olika spjällvinklar samt flertalet tryckkvoter över spjället. Resultaten visar att både en uppvärmd vägg och en vägg med skrovlighet kommer att minska massflödet jämfört med en adiabatisk respektive en slät vägg. Minskningen har både spjällvinkel samt tryckkvots beroende. Den effektiva genomströmmade arean har visats sig följa samma beteende som massflödet vid den större simulerade spjällvinkeln 31 grader, det vill säga öka med ökat tryckfall över spjället. Vid den mindre vinkeln 21 grader, är beteendet helt annorlunda jämfört med massflödet och en minskning av den effektiva arean kan ses vid det största tryckfallet där en ökning förväntades.
|
693 |
Simulation and Evaluation of Two Different Skin Thermocouples : A Comparison made with Respect to Measured TemperatureLundh, Joel January 2007 (has links)
The demand for more accurate measurements is increasing in today’s industry. One reason for this is to optimize production and thus maximize profits. Another reason is that in some cases government regulations dictate that supervision of certain parameters must be followed. At Preemraff Lysekil there are basically four reasons for measuring skin temperatures inside fired process heaters, namely; because of government regulations, in order to estimate the load of the fired process heater, to estimate the lifetime of the tubes inside the fired process heater and finally, to determine the need of decoking. However, only the first three of these reasons are applied to H2301/2/3. The current skin thermocouple design has been in use for many years and now the question of how well it measures surface temperature has risen. Furthermore a new weld-free design is under consideration to replace the old skin thermocouple design. Another question is therefore how well the new design can measure the surface temperature under the same operating conditions as the old one. In order to evaluate this, three–dimensional computer simulations were made of the different designs. As this thesis will show, the differences in calculated skin thermocouple temperature and calculated surface temperature is about the same for the two designs. However, the current design will show a lower temperature than the surface temperature, while the new design will show a higher temperature. Regarding the core of the skin thermocouple designs, namely the thermocouple, no hard conclusions can be drawn, although the industry appears to favor type ’N’ over type ’K’.
|
694 |
Optimization of Heat Sinks with Flow Bypass Using Entropy Generation MinimizationHossain, Md Rakib January 2006 (has links)
Forced air cooling of electronic packages is enhanced through the use of extended surfaces or heat sinks that reduce boundary resistance allowing heat generating devices to operate at lower temperatures, thereby improving reliability. Unfortunately, the clearance zones or bypass regions surrounding the heat sink, channel some of the cooling air mass away from the heat sink, making it difficult to accurately estimate thermal performance. The design of an "optimized" heat sink requires a complete knowledge of all thermal resistances between the heat source and the ambient air, therefore, it is imperative that the boundary resistance is properly characterized, since it is typically the controlling resistance in the path. Existing models are difficult to incorporate into optimization routines because they do not provide a means of predicting flow bypass based on information at hand, such as heat sink geometry or approach velocity. <br /><br /> A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with thermal resistance and fluid pressure drop. All relevant design parameters such as geometric parameters of a heat sink, source and bypass configurations, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature of an electronic component. <br /><br /> An analytical model for predicting air flow and pressure drop across the heat sink is developed by applying conservation of mass and momentum over the bypass regions and in the flow channels established between the fins of the heat sink. The model is applicable for the entire laminar flow range and any type of bypass (side, top or side and top both) or fully shrouded configurations. During the development of the model, the flow was assumed to be steady, laminar, developing flow. The model is also correlated to a simple equation within 8% confidence level for an easy implementation into the entropy generation minimization procedure. The influence of all the resistances to heat transfer associated with a heat sink are studied, and an order of magnitude analysis is carried out to include only the influential resistances in the thermal resistance model. Spreading and material resistances due to the geometry of the base plate, conduction and convection resistances associated with the fins of the heat sink and convection resistance of the wetted surfaces of the base plate are considered for the development of a thermal resistance model. The thermal resistance and pressure drop model are shown to be in good agreement with the experimental data over a wide range of flow conditions, heat sink geometries, bypass configurations and power levels, typical of many applications found in microelectronics and related fields. Data published in the open literature are also used to show the flexibility of the models to simulate a variety of applications. <br /><br /> The proposed thermal resistance and pressure drop model are successfully used in the entropy generation minimization procedure to design a heat sink with bypass for optimum dimensions and performance. A sensitivity analysis is also carried out to check the influence of bypass configurations, power levels, heat sink materials and the coverage ratio on the optimum dimensions and performance of a heat sink and it is found that any change in these parameters results in a change in the optimized heat sink dimensions and flow conditions associated with the application for optimal heat sink performance.
|
695 |
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat SinksKhan, Waqar January 2004 (has links)
In this study, an entropy generation minimization procedure is employed to optimize the overall performance (thermal and hydrodynamic) of isolated fin geometries and pin-fin heat sinks. This allows the combined effects of thermal resistance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. New general expressions for the entropy generation rate are developed using mass, energy, and entropy balances over an appropriate control volume. The formulation for the dimensionless entropy generation rate is obtained in terms of fin geometry, longitudinal and transverse pitches, pin-fin aspect ratio, thermal conductivity, arrangement of pin-fins, Reynolds and Prandtl numbers. It is shown that the entropy generation rate depends on two main performance parameters, i. e. , thermal resistance and the pressure drop, which in turn depend on the average heat transfer and friction coefficients. These coefficients can be taken from fluid flow and heat transfer models. An extensive literature survey reveals that no comprehensive analytical model for any one of them exists that can be used for a wide range of Reynolds number, Prandtl number, longitudinal and transverse pitches, and thermal conductivity. This study is one of the first attempts to develop analytical models for the fluid flow and heat transfer from single pins (circular and elliptical) with and without blockage as well as pin-fin arrays (in-line and staggered). These models can be used for the entire laminar flow range, longitudinal and transverse pitches, any material (from plastic composites to copper), and any fluid having Prandtl numbers (≥0. 71). In developing these models, it is assumed that the flow is steady, laminar, and fully developed. Furthermore, the heat sink is fully shrouded and the thermophysical properties are taken to be temperature independent. Using an energy balance over the same control volume, the average heat transfer coefficient for the heat sink is also developed, which is a function of the heat sink material, fluid properties, fin geometry, pin-fin arrangement, and longitudinal and transverse pitches. The hydrodynamic and thermal analyses of both in-line and staggered pin-fin heat sinks are performed using parametric variation of each design variable including pin diameter, pin height, approach velocity, number of pin-fins, and thermal conductivity of the material. The present analytical results for single pins (circular and elliptical) and pin-fin-arrays are in good agreement with the existing experimental/numerical data obtained by other investigators. It is shown that the present models of heat transfer and pressure drop can be applied for a wide range of Reynolds and Prandtl numbers, longitudinal and transverse pitches, aspect ratios, and thermal conductivity. Furthermore, selected numerical simulations for a single circular cylinder and in-line pin-fin heat sink are also carried out to validate the present analytical models. Results of present numerical simulations are also found to be in good agreement.
|
696 |
An Efficient Computational Method for Thermal Radiation in Participating MediaHassanzadeh, Pedram January 2007 (has links)
Thermal radiation is of significant importance in a broad range of engineering
applications including high-temperature and large-scale systems. Although the
governing equations of thermal radiation have been known for many years, the
complexities inherent in the phenomenon, such as the multidimensionality and
integro-differential nature of these equations, have made it difficult to obtain an
accurate, efficient, and robust computational method. Developing the finite volume
radiation method in the 1990s was a significant progress but not a panacea
for computational radiation. The major drawback of this method, which is common
among all methods that solve for directional intensities, is its slow convergence
rate in many situations which increases the solution cost dramatically. These situations
include large optical thicknesses, strongly reflecting boundaries, and any
other factor that causes strong directional coupling like complex geometries.
Several acceleration schemes have been developed in the heat transfer and neutron
transport communities to expedite the convergence and reduce the solution
cost, but none of them led to a general and reliable method. Among these available
schemes, the two most promising ones, the multiplicative scheme and coupled
ordinates method, suffer from failing on fine grids and being very complicated for
complex scattering phase functions, respectively.
In this research, a new computational method, called the QL method, has been
introduced. The main idea of this method is using the phase weight concept to
relate the directional and average intensities and re-arranging the Radiative Transfer
Equation to find a new expression for the radiant heat flux. This results in an
elliptic-type equation for the average intensity at each control volume which conserves
the radiant energy in all directions in the control volume. This formulation
gives the QL method a great advantage to solve for the average intensity while
including the directional effects. Since the directional effects are included and the
radiant energy is conserved in each control volume, this method is expected to be
accurate and have a good convergence rate in all conditions. The phase weight
distribution required by the QL method can be provided by a method like the finite
volume method or discrete ordinates method.
The QL method is applied to several 1D and 2D test cases including isotropic
and anisotropic scattering, black and partially reflecting boundaries, and emitting absorbing
problems; and its accuracy, convergence rate, and solution cost are studied.
The method has been found to be very stable and efficient, regardless of grid
size and optical thickness. This method establishes very accurate predictions on the
tested coarse grids and its results approach the exact solution with grid refinement.
|
697 |
Measurements and Models Related to Solar Optics in Windows with Shading DevicesKotey, Nathan Amon 06 April 2009 (has links)
Shading devices have the potential to reduce peak cooling load and annual energy consumption because they can be used to control solar gain. Thus, the need to model shading devices in a glazing system analysis is important.
This thesis deals with various measurement techniques and model development related to solar optics in windows with shading devices. It also considers longwave radiative properties of shading devices via model development and experimentation. The different shading devices examined were roller blinds, insect screens, pleated drapes and venetian blinds.
The energy performance of windows with shading devices was modeled using a two step procedure. Solar radiation was considered in the first step by developing a multi-layer solar optical model for glazing/shading systems. This newly developed model is an extension of an existing model for systems of specular glazing layers and includes the effect of layers that create scattered, specifically diffuse, radiation in reflection and/or transmission. Spatially-averaged (effective) optical properties were used to characterise shading layers, including their beam-diffuse split. The multi-layer solar optical model estimates the system solar transmission and absorbed solar components. The absorbed solar components appear as energy source terms in the second step – the heat transfer analysis. The heat transfer analysis involves the formulation of energy balance equations and requires both effective longwave properties and convective heat transfer coefficients as input. The simultaneous solution of the energy balance equations yields the temperature as well as the convective and radiative fluxes.
The effective solar optical properties of flat materials like drapery fabrics, roller blinds and insect screens were obtained by developing a new measurement technique. Special sample holders were designed and fabricated to facilitate measurements using an integrating sphere installed in a commercially available spectrophotometer. Semi-empirical models were then developed to quantify the variation of solar optical properties with respect to incidence angle. In turn, effective layer properties of venetian blinds and pleated drapes were modeled using a more fundamental net radiation scheme.
The effective longwave properties of flat materials were obtained by taking measurements with an infrared reflectometer using two backing surfaces. The results enabled simple models to be developed relating emittance and longwave transmittance to openness, emittance and longwave transmittance of the structure. In turn, effective longwave properties of venetian blinds and pleated drapes were modeled using a net radiation scheme. Convective heat transfer correlations were readily available.
Finally, the newly developed models were validated by measuring the solar gain through various shading devices attached to a double glazed window using the National Solar Test Facility (NSTF) solar simulator and solar calorimeter. Solar gain results were also obtained from simulation software that incorporated the models. There was good agreement between the measured and the simulated results thus strengthening confidence in the newly developed models.
|
698 |
Predicting temperature profiles during simulated forest firesEnninful, Ebenezer Korsah 19 September 2006 (has links)
Below-ground effects during forest fires are some of the important issues forest managers consider when conducting prescribed fire programs. Heat transfer models in soil are needed to predict temperatures in soil during forest fires. Many of the heat transfer models in soil that include the effects of moisture are complex and in most cases do not have very good predictive abilities. Researchers believe that simple heat transfer models in soil that neglect the effects of moisture could have very good predictive abilities.<p>This study presents a one-dimensional numerical model of heat transfer in dry homogenous sand. Both constant and temperature dependent thermal properties of the sand were used in order to determine which had better predictive abilities. The constant thermal properties model was also extended to a model of two-layer dry soil. A computer code written in Fortran was used to generate results from the model. A number of experiments were conducted with dry sand to validate the model. A comparison of the numerical and experimental results indicated that the temperature dependent properties model had better predictive abilities than the constant properties model. The models were found to do a good job of predicting temperature profiles and depth of lethal heat penetration at heat fluxes indicative of forest fires.<p>Experiments were also conducted to determine the effect of moisture on temperature profiles and the depth of lethal heat penetration in sand and the effect of inorganics on the spread rate of smoldering combustion in peat moss. An experimental correlation of the effects of inorganic content on the spread rate of smoldering combustion in peat moss was developed. Additionally, laboratory methods of validating models of heat transfer in soil were developed with the aim of limiting the dependence on full scale testing. Specifically the use of the cone calorimeter for validating numerical models of heat transfer in soil and the responses of forest floor soil and laboratory created soil samples to heat input were compared. The results indicated that the laboratory created soil did a very good job of mimicking the heat response of the forest floor soil with a maximum difference in lethal heat penetration of 4%.
|
699 |
Radiative Properties of Emerging Materials and Radiation Heat Transfer at the NanoscaleFu, Ceji 23 November 2004 (has links)
A negative index material (NIM), which possesses simultaneously negative permittivity and permeability, is an emerging material that has caught many researchers attention after it was first demonstrated in 2001. It has been shown that electromagnetic waves propagating in NIMs have some remarkable properties such as negative phase velocities and negative refraction and hold enormous promise for applications in imaging and optical communications. This dissertation is centered on investigating the unique aspects of the radiative properties of NIMs. Photon tunneling, which relies on evanescent waves to transfer radiative energy, has important applications in thin-film structures, microscale thermophotovoltaic devices, and scanning thermal microscopes. With multilayer thin-film structures, photon tunneling is shown to be greatly enhanced using NIM layers. The enhancement is attributed to the excitation of surface or bulk polaritons, and depends on the thicknesses of the NIM layers according to the phase matching condition. A new coherent thermal emission source is proposed by pairing a negative permittivity (but positive permeability) layer with a negative permeability (but positive permittivity) layer. The merits of such a coherent thermal emission source are that coherent thermal emission occurs for both s- and p-polarizations, without use of grating structures. Zero power reflectance from an NIM for both polarizations indicates the existence of the Brewster angles for both polarizations under certain conditions. The criteria for the Brewster angle are determined analytically and presented in a regime map. The findings on the unique radiative properties of NIMs may help develop advanced energy conversion devices. Motivated by the recent advancement in scanning probe microscopy, the last part of this dissertation focuses on prediction of the radiation heat transfer between two closely spaced semi-infinite media. The objective is to investigate the dopant concentration of silicon on the near-field radiation heat transfer. It is found that the radiative energy flux can be significantly augmented by using heavily doped silicon for the two media separated at nanometric distances. Large enhancement of radiation heat transfer at the nanoscale may have an impact on the development of near-field thermal probing and nanomanufacturing techniques.
|
700 |
Enhanced boiling heat transfer by submerged, vibration induced jetsTillery, Steven W. 14 July 2005 (has links)
In this analysis, the efficacy of cavitation jets for heat transfer enhancement was demonstrated. The cavitation jet was formed from a cluster of cavitation bubbles that are the result of a submerged piezoelectric diaphragms oscillating about a given velocity threshold Two different heaters operating in two different flow environments were examined. For each heater in each environment, the cavitation jet significantly increased the heat transfer
|
Page generated in 0.0611 seconds