Spelling suggestions: "subject:"hecke algebra"" "subject:"decke algebra""
11 |
Completely splittable representations of symmetric groups and affine Hecke algebras /Ruff, Oliver, January 2005 (has links)
Thesis (Ph. D.)--University of Oregon, 2005. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 44-45). Also available for download via the World Wide Web; free to University of Oregon users.
|
12 |
Computations in Galois Cohomology and Hecke AlgebrasDavis, Tara C. 09 1900 (has links)
<p> We study two objects: an ideal of a Hecke algebra, and a pairing in Galois cohomology.</p> <p> Let h be the Hecke algebra of cusp forms of weight 2, level n, and a fixed Dirichlet character modulo n generated by all Hecke operators, where n is an odd prime p or a product of two distinct odd primes N and p. We study the Eisenstein I ideal of h. We wrote a computer
program to test whether Up - 1 generates this ideal, where Up is the pth Hecke operator in h. We found many cases of n and the character so that Up - 1 alone generates I. On the other hand, we found one example with N = 3 and p = 331 where Up - 1 does not generate I.</p> <p> Let K = Q(μn) be the nth cyclotomic field. Let S be the set of primes above p in K, and let G_K,S be the Galois group of the maximal extension of K unramified outside S. We study a pairing on cyclotomic p-units that arises from the cup product on H1(G_K,S, μp). This pairing takes values in a Gal(K/Q)-eigenspace of the p-part of the class group of K. Sharifi has conjectured that this pairing is surjective. We studied this pairing in detail by imposing linear relations on the possible pairing values. We discovered many values of n and the character such that these relations single out a unique nontrivial possibility for the pairing, up to a possibly zero scalar.</p> <p> Sharifi showed in [S2] that, under an assumption on Bernoulli numbers, the element Up - 1 generates the Eisenstein ideal I if and only if pairing with the single element p is surjective. In particular, in the instances for which we found a unique nontrivial possibility for the pairing, then if Up - 1 generates I, we know that the scalar up to
which it is determined cannot be zero.</p> / Thesis / Master of Science (MSc)
|
13 |
Algèbres de Hecke carquois et généralisations d'algèbres d'Iwahori-Hecke / Quiver Hecke algebras and generalisations of Iwahori-Hecke algebrasRostam, Salim 19 November 2018 (has links)
Cette thèse est consacrée à l'étude des algèbres de Hecke carquois et de certaines généralisations des algèbres d'Iwahori-Hecke. Dans un premier temps, nous montrons deux résultats concernant les algèbres de Hecke carquois, dans le cas où le carquois possède plusieurs composantes connexes puis lorsqu'il possède un automorphisme d'ordre fini. Ensuite, nous rappelons un isomorphisme de Brundan-Kleshchev et Rouquier entre algèbres d'Ariki-Koike et certaines algèbres de Hecke carquois cyclotomiques. D'une part nous en déduisons qu'une équivalence de Morita importante bien connue entre algèbres d'Ariki-Koike provient d'un isomorphisme, d'autre part nous donnons une présentation de type Hecke carquois cyclotomique pour l'algèbre de Hecke de G(r,p,n). Nous généralisons aussi l'isomorphisme de Brundan-Kleshchev pour montrer que les algèbres de Yokonuma-Hecke cyclotomiques sont des cas particuliers d'algèbres de Hecke carquois cyclotomiques. Finalement, nous nous intéressons à un problème de combinatoire algébrique, relié à la théorie des représentations des algèbres d'Ariki-Koike. En utilisant la représentation des partitions sous forme d'abaque et en résolvant, via un théorème d'existence de matrices binaires, un problème d'optimisation convexe sous contraintes à variables entières, nous montrons qu'un multi-ensemble de résidus qui est bégayant provient nécessairement d'une multi-partition bégayante. / This thesis is devoted to the study of quiver Hecke algebras and some generalisations of Iwahori-Hecke algebras. We begin with two results concerning quiver Hecke algebras, first when the quiver has several connected components and second when the quiver has an automorphism of finite order. We then recall an isomorphism of Brundan-Kleshchev and Rouquier between Ariki-Koike algebras and certain cyclotomic quiver Hecke algebras. From this, on the one hand we deduce that a well-known important Morita equivalence between Ariki--Koike algebras comes from an isomorphism, on the other hand we give a cyclotomic quiver Hecke-like presentation for the Hecke algebra of type G(r,p,n). We also generalise the isomorphism of Brundan-Kleshchev to prove that cyclotomic Yokonuma-Hecke algebras are particular cases of cyclotomic quiver Hecke algebras. Finally, we study a problem of algebraic combinatorics, related to the representation theory of Ariki-Koike algebras. Using the abacus representation of partitions and solving, via an existence theorem for binary matrices, a constrained optimisation problem with integer variables, we prove that a stuttering multiset of residues necessarily comes from a stuttering multipartition.
|
14 |
The Cyclotomic Birman-Murakami-Wenzl AlgebrasYu, Shona Huimin January 2007 (has links)
Doctor of Philosophy / This thesis presents a study of the cyclotomic BMW algebras, introduced by Haring-Oldenburg as a generalization of the BMW (Birman-Murakami-Wenzl) algebras related to the cyclotomic Hecke algebras of type G(k,1,n) (also known as Ariki-Koike algebras) and type B knot theory involving affine/cylindrical tangles. The motivation behind the definition of the BMW algebras may be traced back to an important problem in knot theory; namely, that of classifying knots (and links) up to isotopy. The algebraic definition of the BMW algebras uses generators and relations originally inspired by the Kauffman link invariant. They are intimately connected with the Artin braid group of type A, Iwahori-Hecke algebras of type A, and with many diagram algebras, such as the Brauer and Temperley-Lieb algebras. Geometrically, the BMW algebra is isomorphic to the Kauffman Tangle algebra. The representations and the cellularity of the BMW algebra have now been extensively studied in the literature. These algebras also feature in the theory of quantum groups, statistical mechanics, and topological quantum field theory. In view of these relationships between the BMW algebras and several objects of "type A", several authors have since naturally generalized the BMW algberas for other types of Artin groups. Motivated by knot theory associated with the Artin braid group of type B, Haring-Oldenburg introduced the cyclotomic BMW algebras B_n^k as a generalization of the BMW algebras such that the Ariki-Koike algebra h_{n,k} is a quotient of B_n^k, in the same way the Iwahori-Hecke algebra of type A is a quotient of the BMW algebra. In this thesis, we investigate the structure of these algebras and show they have a topological realization as a certain cylindrical analogue of the Kauffman Tangle algebra. In particular, they are shown to be R-free of rank k^n (2n-1)!! and bases that may be explicitly described both algebraically and diagrammatically in terms of cylindrical tangles are obtained. Unlike the BMW and Ariki-Koike algebras, one must impose extra so-called "admissibility conditions" on the parameters of the ground ring in order for these results to hold. This is due to potential torsion caused by the polynomial relation of order k imposed on one of the generators of B_n^k. It turns out that the representation theory of B_2^k is crucial in determining these conditions precisely. The representation theory of B_2^k is analysed in detail in a joint preprint with Wilcox in [45] (http://arxiv.org/abs/math/0611518). The admissibility conditions and a universal ground ring with admissible parameters are given explicitly in Chapter 3. The admissibility conditions are also closely related to the existence of a non-degenerate Markov trace function of B_n^k which is then used together with the cyclotomic Brauer algebras in the linear independency arguments contained in Chapter 4. Furthermore, in Chapter 5, we prove the cyclotomic BMW algebras are cellular, in the sense of Graham and Lehrer. The proof uses the cellularity of the Ariki-Koike algebras (Graham-Lehrer [16] and Dipper-James-Mathas [8]) and an appropriate "lifting" of a cellular basis of the Ariki-Koike algebras into B_n^k, which is compatible with a certain anti-involution of B_n^k. When k = 1, the results in this thesis specialize to those previously established for the BMW algebras by Morton-Wasserman [30], Enyang [9], and Xi [47]. REMARKS: During the writing of this thesis, Goodman and Hauschild-Mosley also attempt similar arguments to establish the freeness and diagram algebra results mentioned above. However, they withdrew their preprints ([14] and [15]), due to issues with their generic ground ring crucial to their linear independence arguments. A similar strategy to that proposed in [14], together with different trace maps and the study of rings with admissible parameters in Chapter 3, is used in establishing linear independency of our basis in Chapter 4. Since the submission of this thesis, new versions of these preprints have been released in which Goodman and Hauschild-Mosley use alternative topological and Jones basic construction theory type arguments to establish freeness of B_n^k and an isomorphism with the cyclotomic Kauffman Tangle algebra. However, they require their ground rings to be an integral domain with parameters satisfying the (slightly stronger) admissibility conditions introduced by Wilcox and the author in [45]. Also, under these conditions, Goodman has obtained cellularity results. Rui and Xu have also obtained freeness and cellularity results when k is odd, and later Rui and Si for general k, under the assumption that \delta is invertible and using another stronger condition called "u-admissibility". The methods and arguments employed are strongly influenced by those used by Ariki, Mathas and Rui [3] for the cyclotomic Nazarov-Wenzl algebras and involve the construction of seminormal representations; their preprints have recently been released on the arXiv. It should also be noted there are slight differences between the definitions of cyclotomic BMW algebras and ground rings used, as explained partly above. Furthermore, Goodman and Rui-Si-Xu use a weaker definition of cellularity, to bypass a problem discovered in their original proofs relating to the anti-involution axiom of the original Graham-Lehrer definition. This Ph.D. thesis, completed at the University of Sydney, was submitted September 2007 and passed December 2007.
|
15 |
The Cyclotomic Birman-Murakami-Wenzl AlgebrasYu, Shona Huimin January 2007 (has links)
Doctor of Philosophy / This thesis presents a study of the cyclotomic BMW algebras, introduced by Haring-Oldenburg as a generalization of the BMW (Birman-Murakami-Wenzl) algebras related to the cyclotomic Hecke algebras of type G(k,1,n) (also known as Ariki-Koike algebras) and type B knot theory involving affine/cylindrical tangles. The motivation behind the definition of the BMW algebras may be traced back to an important problem in knot theory; namely, that of classifying knots (and links) up to isotopy. The algebraic definition of the BMW algebras uses generators and relations originally inspired by the Kauffman link invariant. They are intimately connected with the Artin braid group of type A, Iwahori-Hecke algebras of type A, and with many diagram algebras, such as the Brauer and Temperley-Lieb algebras. Geometrically, the BMW algebra is isomorphic to the Kauffman Tangle algebra. The representations and the cellularity of the BMW algebra have now been extensively studied in the literature. These algebras also feature in the theory of quantum groups, statistical mechanics, and topological quantum field theory. In view of these relationships between the BMW algebras and several objects of "type A", several authors have since naturally generalized the BMW algberas for other types of Artin groups. Motivated by knot theory associated with the Artin braid group of type B, Haring-Oldenburg introduced the cyclotomic BMW algebras B_n^k as a generalization of the BMW algebras such that the Ariki-Koike algebra h_{n,k} is a quotient of B_n^k, in the same way the Iwahori-Hecke algebra of type A is a quotient of the BMW algebra. In this thesis, we investigate the structure of these algebras and show they have a topological realization as a certain cylindrical analogue of the Kauffman Tangle algebra. In particular, they are shown to be R-free of rank k^n (2n-1)!! and bases that may be explicitly described both algebraically and diagrammatically in terms of cylindrical tangles are obtained. Unlike the BMW and Ariki-Koike algebras, one must impose extra so-called "admissibility conditions" on the parameters of the ground ring in order for these results to hold. This is due to potential torsion caused by the polynomial relation of order k imposed on one of the generators of B_n^k. It turns out that the representation theory of B_2^k is crucial in determining these conditions precisely. The representation theory of B_2^k is analysed in detail in a joint preprint with Wilcox in [45] (http://arxiv.org/abs/math/0611518). The admissibility conditions and a universal ground ring with admissible parameters are given explicitly in Chapter 3. The admissibility conditions are also closely related to the existence of a non-degenerate Markov trace function of B_n^k which is then used together with the cyclotomic Brauer algebras in the linear independency arguments contained in Chapter 4. Furthermore, in Chapter 5, we prove the cyclotomic BMW algebras are cellular, in the sense of Graham and Lehrer. The proof uses the cellularity of the Ariki-Koike algebras (Graham-Lehrer [16] and Dipper-James-Mathas [8]) and an appropriate "lifting" of a cellular basis of the Ariki-Koike algebras into B_n^k, which is compatible with a certain anti-involution of B_n^k. When k = 1, the results in this thesis specialize to those previously established for the BMW algebras by Morton-Wasserman [30], Enyang [9], and Xi [47]. REMARKS: During the writing of this thesis, Goodman and Hauschild-Mosley also attempt similar arguments to establish the freeness and diagram algebra results mentioned above. However, they withdrew their preprints ([14] and [15]), due to issues with their generic ground ring crucial to their linear independence arguments. A similar strategy to that proposed in [14], together with different trace maps and the study of rings with admissible parameters in Chapter 3, is used in establishing linear independency of our basis in Chapter 4. Since the submission of this thesis, new versions of these preprints have been released in which Goodman and Hauschild-Mosley use alternative topological and Jones basic construction theory type arguments to establish freeness of B_n^k and an isomorphism with the cyclotomic Kauffman Tangle algebra. However, they require their ground rings to be an integral domain with parameters satisfying the (slightly stronger) admissibility conditions introduced by Wilcox and the author in [45]. Also, under these conditions, Goodman has obtained cellularity results. Rui and Xu have also obtained freeness and cellularity results when k is odd, and later Rui and Si for general k, under the assumption that \delta is invertible and using another stronger condition called "u-admissibility". The methods and arguments employed are strongly influenced by those used by Ariki, Mathas and Rui [3] for the cyclotomic Nazarov-Wenzl algebras and involve the construction of seminormal representations; their preprints have recently been released on the arXiv. It should also be noted there are slight differences between the definitions of cyclotomic BMW algebras and ground rings used, as explained partly above. Furthermore, Goodman and Rui-Si-Xu use a weaker definition of cellularity, to bypass a problem discovered in their original proofs relating to the anti-involution axiom of the original Graham-Lehrer definition. This Ph.D. thesis, completed at the University of Sydney, was submitted September 2007 and passed December 2007.
|
16 |
The Jantzen-Shapovalov form and Cartan invariants of symmetric groups and Hecke algebras /Hill, David Edward, January 2007 (has links)
Thesis (Ph. D.)--University of Oregon, 2007. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 107-108). Also available for download via the World Wide Web; free to University of Oregon users.
|
17 |
Representations of Hecke algebras and the Alexander polynomialBlack, Samson, 1979- 06 1900 (has links)
viii, 50 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We study a certain quotient of the Iwahori-Hecke algebra of the symmetric group Sd , called the super Temperley-Lieb algebra STLd. The Alexander polynomial of a braid can be computed via a certain specialization of the Markov trace which descends to STLd. Combining this point of view with Ocneanu's formula for the Markov trace and Young's seminormal form, we deduce a new state-sum formula for the Alexander polynomial. We also give a direct combinatorial proof of this result. / Committee in charge: Arkady Vaintrob, Co-Chairperson, Mathematics
Jonathan Brundan, Co-Chairperson, Mathematics;
Victor Ostrik, Member, Mathematics;
Dev Sinha, Member, Mathematics;
Paul van Donkelaar, Outside Member, Human Physiology
|
18 |
Graded representation theory of Hecke algebrasNash, David A., 1982- 06 1900 (has links)
xii, 76 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We study the graded representation theory of the Iwahori-Hecke algebra, denoted by Hd , of the symmetric group over a field of characteristic zero at a root of unity. More specifically, we use graded Specht modules to calculate the graded decomposition numbers for Hd . The algorithm arrived at is the Lascoux-Leclerc-Thibon algorithm in disguise. Thus we interpret the algorithm in terms of graded representation theory.
We then use the algorithm to compute several examples and to obtain a closed form for the graded decomposition numbers in the case of two-column partitions. In this case, we also precisely describe the 'reduction modulo p' process, which relates the graded irreducible representations of Hd over [Special characters omitted.] at a p th -root of unity to those of the group algebra of the symmetric group over a field of characteristic p. / Committee in charge: Alexander Kleshchev, Chairperson, Mathematics;
Jonathan Brundan, Member, Mathematics;
Boris Botvinnik, Member, Mathematics;
Victor Ostrik, Member, Mathematics;
William Harbaugh, Outside Member, Economics
|
19 |
On the Subregular J-ring of Coxeter SystemsXu, Tianyuan 06 September 2017 (has links)
Let (W, S) be an arbitrary Coxeter system, and let J be the asymptotic Hecke
algebra associated to (W, S) via Kazhdan-Lusztig polynomials by Lusztig. We study
a subalgebra J_C of J corresponding to the subregular cell C of W . We prove a
factorization theorem that allows us to compute products in J_C without inputs
from Kazhdan-Lusztig theory, then discuss two applications of this result. First, we
describe J_C in terms of the Coxeter diagram of (W, S) in the case (W, S) is simply-
laced, and deduce more connections between the diagram and J_C in some other
cases. Second, we prove that for certain specific Coxeter systems, some subalgebras
of J_C are free fusion rings, thereby connecting the algebras to compact quantum
groups arising in operator algebra theory.
|
20 |
Generic Algebras and Kazhdan-Lusztig Theory for Monomial GroupsAlhaddad, Shemsi I. 05 1900 (has links)
The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial approach to representations of Iwahori-Hecke algebras introduced by Kazhdan and Lusztig in 1979. In this dissertation, I discuss a generalization of the Iwahori-Hecke algebra of the symmetric group that is instead based on the complex reflection group G(r,1,n). Using the analogues of Kazhdan and Lusztig's R-polynomials, I show that this algebra determines a partial order on G(r,1,n) that generalizes the Chevalley-Bruhat order on the symmetric group. I also consider possible analogues of Kazhdan-Lusztig polynomials.
|
Page generated in 0.0486 seconds