Spelling suggestions: "subject:"helicity"" "subject:"felicity""
1 |
PROBING THE LOW-X GLUON HELICITY DISTRIBUTION WITH DIJET DOUBLE SPIN ASYMMETRIES IN POLARIZED PROTON COLLISIONS AT <em>√S</em> = 510 GEVRamachandran, Suvarna 01 January 2018 (has links)
The proton is a complex subatomic particle consisting of quarks and gluons, and one of the key questions in nuclear physics is how the spin of the proton is distributed amongst its constituents. Polarized deep inelastic scattering experiments with leptons and protons estimate that the quark spin contribution is approximately 30%. The limited kinematic reach of these experiments, combined with the fact that they are only indirectly sensitive to the electrically neutral gluon, means they can provide very little information about the gluon contribution to the spin of the proton. In contrast, hadronic probes, such as polarized proton collisions provide direct access to the gluon helicity distribution.
The production of jets in polarized proton collisions at STAR is dominated by quark-gluon and gluon-gluon scattering processes. The dijet longitudinal double spin asymmetry (ALL) is sensitive to the polarized parton distributions and may be used to extract information about the gluon contribution to the spin of the proton. Previous STAR jet measurements at √s = 200 GeV show evidence of polarized gluons for gluon momentum fractions above 0.05. The measurement of dijet ALL at √s = 510 GeV will extend the current constraints on the gluon helicity distribution to low momentum fractions and allow for the reconstruction of the partonic kinematics. Information about the initial state momentum provides unique constraints on the functional form of the gluon helicity distribution, thus reducing the uncertainty on extrapolations to poorly constrained regions. This thesis will present the first measurement of the dijet ALL at √s = 510 GeV, from polarized proton data taken during the 2012 RHIC run.
|
2 |
Measurement of the W Boson Helicity Fractions in Top/anit-Top Events at 8 TeV in the Lepton + Jets Channel with the ATLAS DetectorKareem, Mohammad Jawad 20 April 2017 (has links)
No description available.
|
3 |
The role of helicity in turbulent fluid dynamicsLipscombe, Trevor January 1986 (has links)
In this thesis we consider turbulent fluid systems. We develop a closure scheme in which the mean velocity field of an incompressible fluid is driven by a turbulent velocity field possessing a non-zero mean helicity. We use this to investigate the formation of large scale vortices and the behaviour of the mean kinetic energy, enstrophy and helicity. The same technique is then applied to the equations of magneto-hydrodynamics, in order to explain the self-generation of mean magnetic fields, and the joint formation of current and vortex structures. We then discuss the convection of a passive scalar by the fluid and determine an equation for the mean temperature. Finally we present a theory to account for the behaviour of a two-dimensional electrically conducting fluid subject to a constant external magnetic field driven by external forces. We explain the peaks in the power spectrum, the saturation of the magnetic and kinetic energies, and the insensitiveness of their equilibrium value on the external field. All of these are observed in numerical experiments.
|
4 |
Light Mediated Drug Delivery Using Photocaged Molecules and Photoswitchable PeptidesMitra, Deboleena 01 January 2014 (has links)
There are many different types of targeted therapy for cancer treatment. The method of light mediated targeted therapy that we have developed uses photocaged molecules and photoswitchable peptides.
In photocaging, a biologically active molecule is made inactive by the attachment of a photocleavable blocking group. On exposure to UV radiation the photocleavable entity is removed and the biologically active molecule is released. Using this concept we have designed a prodrug that consists of a cell impermeable hydrophilic molecule attached to a photocaged doxorubicin. Upon irradiation with UV light the photosensitive group is removed and cytotoxic doxorubicin is released at the tumor site. This concept has been further modified by attaching receptor binding molecules to the photocaged entity to increase its specificity.
A peptide which consists of an azobenzene photoswitch has been used which, in the dark state is randomly coiled and cell impermeable but upon illumination becomes helical and cell permeable and can be used to deliver drugs into the cells. Upon illumination with UV light of suitable wavelength the azobenzene linker will change from a trans to a cis form and this will convert the randomly coiled cell impermeable peptide into an α helical permeable form. Thus a series of peptides have been designed with different arginine mutations which develop an arginine patch in the helical form. This arginine patch would help in cell permeability by interacting with cell surface glycans. The method could potentially be used to deliver drugs into cells in presence of light.
|
5 |
Visualization and Quantification of Helical Flow in the Aorta using 4D Flow MRIGustafsson, Filippa January 2016 (has links)
Due to the complex anatomy of the heart, heart valves and aorta, blood flow in the aorta is known to be complex and can exhibit a swirling, or helical, flow pattern. The purpose of this thesis is to implement methods to quantify and visualize both the speed of helicity, referred to as the helicity density, and the direction of helicity, which is measured by the localized normalized helicity. Furthermore, the relationship between helicity and geometrical aorta parameters were studied in young and old healthy volunteers. Helicity and geometrical parameters were quantified for 22 healthy volunteers (12 old, 10 young) that were examined using 4D Flow MRI. The relation between helicity and the geometry of the aorta was explored, and the results showed that the tortuosity and the diameter of the aorta are related to the helicity, but the jet angle and flow displacement do not appear to play an important role. This suggests that in healthy volunteers the helical flow is primarily affected by the geometry of the aorta, although further trials should be performed to fully characterize the effects of aortic geometry. The results also show that the helicity changes with age between the two age groups and some of the geometrical parameters also has a significant difference between the age groups.
|
6 |
Measurement of the Double Helicity Asymmetry in Inclusive π0 Production in Polarized Proton-Proton Collision at Center of Mass Energy of 510 GeV.Guragain, Hari 17 December 2015 (has links)
One of the biggest quests in nuclear and particle physics in the last three decades is to unravel the spin structure of hadrons like protons and neutrons. Spin not only plays a central role in the strong force connecting the elementary constituents of matter, but is also responsible for many of its fundamental properties including the magnetic moment which defines the magnetic properties, the different phases in low temperature physics, and the stability of the universe in general. The origin of the spin of particles like protons and neutrons, which make up to 99.9% of the visible universe, has been the focus of experimental and theoretical efforts. Experiments at European Muon Collaboration (EMC) found that our knowledge of how the spin of the nucleon is derived from its elementary constituents is naive, and our interpretations are not valid. This was termed the spin crisis, an outstanding puzzle for more than three decades and is still not solved. Deciphering the spin puzzle requires knowing the spin of elementary constituents of these particles, quarks and gluons.
One of the major objectives of the Relativistic Heavy Ion Collider (RHIC) spin program at Brookhaven National Laboratory is the measurement of the gluon helicity contribution to the proton spin via measuring the double helicity asymmetry (ALL) in various channels. In Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) we measure ALL in π0 meson production. The π0 meson is reconstructed through its di-photon decay channel. The photons are detected by the PHENIX Electromagnetic Calorimeter, which consists of lead glass and lead scintillator detectors and covers a rapidity of |η|< 0.35 and azimuthal angle of
180°.
In this dissertation, the results of ALLin π0 production from the data collected in 2013 at center of mass energy = 510 GeV are presented. In 2013, the total integrated luminosity is 150 pb-1 which is almost ten times the total luminosity recorded in 2009 at center of mass energy = 200 GeV. Due to the increase in the center of mass energy and integrated luminosity, these measurements cover the Bjorken x range down to ~0.01. A non-zero ALL result is observed that is consistent with positive gluon polarization in the probed kinematics.
|
7 |
Modélisation du transport en turbulence homogène. / Modelling of transport in homogeneous turbulenceBriard, Antoine 11 October 2017 (has links)
La modélisation est essentielle pour comprendre et reproduire les phénomènes physiques dominants ayant lieu dans des écoulements turbulents naturels (atmosphériques, océaniques). En effet, la dynamique des écoulements géophysiques résulte d'interactions complexes à des échelles et intensités variées, et sur des temps différents. La description précise de tels écoulements est pour le moment hors de portée des simulations numériques directes, surtout à cause des limitations en nombre de Reynolds. C'est pourquoi dans cette thèse on s'attaque à la modélisation de la turbulence homogène avec le formalisme spectral de l'approximation EDQNM. Ceci nous permet d'obtenir des résultats rapidement en termes de ressources numériques à très grands nombres de Reynolds, et ainsi d'étudier séparément la plupart des mécanismes en jeu dans les écoulements turbulents naturels, à savoir le cisaillement, le gradient de température, la stratification, l'hélicité, et des combinaisons de ces éléments. On procède en deux étapes: tout d'abord, l'EDQNM permet de fermer les équations des moments d'ordre 2, et ensuite l'anisotropie est modélisée grâce à des tenseurs moyennés sphériquement. Cette méthode est appliquée aux différentes configurations mentionnées ci-dessus, nous permet de proposer de nouveaux résultats et de les valider numériquement à grands nombres de Reynolds. Parmi les points les plus importants, nous nous sommes concentrés sur (i) la prédiction des lois de croissance et décroissance de quantités telles que l'énergie cinétique, la variance scalaire et l'hélicité; (ii) la détermination des comportements spectraux; et (iii) la distribution d'anisotropie échelle par échelle. / Modelling is essential to understand and reproduce the dominant physical mechanisms occurring in natural turbulent flows such as atmospheric and oceanic ones. Indeed, the dynamics of geophysical flows results of multiple complex processes interacting with each others, at various scales, intensities, and on different characteristic times. The fine description of such flows is currently out of reach of direct numerical simulations, notably because of Reynolds numbers limitations. Consequently, we address in this thesis the modelling of homogeneous turbulence, using the spectral formalism of the eddy-damped quasi-normal Markovian (EDQNM) approximation. This first allows us to obtain results rapidly in terms of computational resources at very large Reynolds numbers, and thus to investigate separately some of the fundamental mechanisms at stake in natural turbulent flows, namely shear, mean temperature gradient, stratification, helicity, and combinations of these processes. In this framework, a two-step approach is considered: first, EDQNM is used to close the non-linear terms in the second-order moments equations, and anisotropy is then modelled through spherically-averaged tensors. This methodology is applied to the various configurations mentioned above, permits to propose new theoretical results, and to assess them numerically at large Reynolds numbers. Among the most important findings, we focused on (i) the prediction of the decay and growth laws of crucial one-point statistics such as the kinetic energy, the scalar variance, and helicity; (ii) the determination of spectral scalings; and (iii) the scale by scale distribution of anisotropy.
|
8 |
Exploring properties of a 10-dimensional pure spinor twistor transformGarcia, Cesar January 2021 (has links)
In this review, several tools used in the study of super-Yang-Mills scattering amplitudes are discussed, namely spinor-helicity and (super)twistor variables. These variables are then implemented in string theories in 4D, and a suitable generalization to 10D using pure spinors is discussed. Dimensional reduction of this model to 4D is then performed, and some comparisons to other 4D models are drawn.
|
9 |
Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl ChloridesPowoski, Robert A. 08 1900 (has links)
Examinations of the effects of (a.) alkyl carbon chain length and (b.) perfluorination of acyl chlorides; propionyl chloride, butyryl chloride, valeroyl chloride, and perfluorinated acyl chlorides; perfluoropropionyl chloride and perfluorobutyryl chloride, are reported and compared using CP-FTMW spectroscopy. All of these molecules are already published in various journals except for valeroyl chloride. The chapters are organized by molecule alkyl chain length and include some background theory. Conformational stability, internal rotation, helicity, and ionic character of the C-Cl bond via the nuclear electric quadrupole coupling constant (χzz) are analyzed. Results show syn, syn-anti/syn-gauche, and syn-anti-anti/syn-gauche-anti stable conformations. Internal rotation was only seen in propionyl chloride. Helicity was not observed. (χzz) was observed to be inert to alkyl chain length, ~ 60 MHz and ~ 65 MHz for the nonfluorinated and fluorinated acyl chlorides. Partial fluorination and varying functional groups are recommended.
|
10 |
Kerrovská mikroskopie magnetických mikrostruktur / Kerr microscopy of magnetic microstructuresHovořáková, Kristýna January 2022 (has links)
The main objective of the thesis was to construct a wide-field Kerr microscope to study all-optical helicity-dependent (AOHDS) switching in FePt nanograins. The wide- field Kerr microscope was successfully implemented into AOHDS experiments, was fully characterized and optimized for maximum image contrast. The real-time imaging and resolution of 2, 5µm enables the study of a wide range of magnetic materials and their dynamics. Moreover, a new light source, the High Lumen Density MODULE from CRY- TUR, spol. s r.o., was tested for future application in Kerr microscopy. The technical solution enabled to form a collimated beam with low divergence required for Kerr mi- croscopy. From the switching experiments on FePt nanograins, we observed a strong non-magnetic contribution to the magnetic signal, not reported in previous works. The experiments have also shown that the switching intensity depends on the laser spot size and total laser power, suggesting that the FePt grains are not entirely isolated. The grains' ensemble exhibits a more complex behavior than anticipated. 1
|
Page generated in 0.0291 seconds