• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 49
  • 31
  • 15
  • 15
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 285
  • 110
  • 50
  • 49
  • 38
  • 34
  • 32
  • 31
  • 29
  • 26
  • 26
  • 24
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Precise Fish Volume Estimation Using Underwater Helmholtz Resonance / 水中ヘルムホルツ共鳴を用いた魚体積の精密推定

Njane, Stephen Njehia 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22076号 / 農博第2368号 / 新制||農||1072(附属図書館) / 学位論文||R1||N5230(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 近藤 直, 准教授 小川 雄一, 教授 飯田 訓久 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
72

Refinement of a Novel Compact Waveguide

January 2019 (has links)
abstract: Presented is a design approach and test of a novel compact waveguide that demonstrated the outer dimensions of a rectangular waveguide through the introduction of parallel raised strips, or flanges, which run the length of the rectangular waveguide along the direction of wave propagation. A 10GHz waveguide was created with outer dimensions of a=9.0mm and b=3.6mm compared to a WR-90 rectangular waveguide with outer dimensions of a=22.86mm and b=10.16mm which the area is over 7 times the area. The first operating bandwidth for a hollow waveguide of dimensions a=9.0mm and b=3.6mm starts at 16.6GHz a 40% reduction in cutoff frequency. The prototyped and tested compact waveguide demonstrated an operating close to the predicted 2GHz with predicted vs measured injection loss generally within 0.25dB and an overall measured injection loss of approximately 4.67dB/m within the operating bandwidth. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
73

Numerical analysis of acoustic scattering by a thin circular disk, with application to train-tunnel interaction noise

Zagadou, Franck January 2002 (has links)
The sound generated by high speed trains can be exacerbated by the presence of trackside structures. Tunnels are the principal structures that have a strong influence on the noise produced by trains. A train entering a tunnel causes air to flow in and out of the tunnel portal, forming a monopole source of low frequency sound ["infrasound"] whose wavelength is large compared to the tunnel diameter. For the compact case, when the tunnel diameter is small, incompressible flow theory can be used to compute the Green's function that determines the monopole sound. However, when the infrasound is "shielded" from the far field by a large "flange" at the tunnel portal, the problem of calculating the sound produced in the far field is more complex. In this case, the monopole contribution can be calculated in a first approximation in terms of a modified Compact Green's function, whose properties are determined by the value at the center of a. disk (modelling the flange) of a diffracted potential produced by a thin circular disk. In this thesis this potential is calculated numerically. The scattering of sound by a thin circular disk is investigated using the Finite Difference Method applied to the three dimensional Helmholtz equation subject to appropriate boundary conditions on the disk. The solution is also used to examine the unsteady force acting on the disk.
74

Calibration and Characterization of Cubesat Magnetic Sensors Using a Helmholtz Cage

Foley, Justin Dean 01 December 2012 (has links) (PDF)
Small satellites, and CubeSats in particular, have quickly become a hot topic in the aerospace industry. Attitude determination is currently one of the most intense areas of development for these miniaturized systems and future Cal Poly satellite missions will depend heavily on magnetometers. In order to utilize magnetometers as a viable source of attitude knowledge, precise calibration is required to ensure the greatest accuracy achievable. This paper outlines a procedure for calibrating and testing magnetometers on the next generation of Cal Poly CubeSates, utilizing a Helmholtz cage to simulate any desired orbital magnetic field that would be experienced by a spacecraft around Earth, as well as investigation of magnetic interference as a result of on-board electrical activity.
75

A Multi-Frequency Inverse Source Problem for the Helmholtz Equation

Acosta, Sebastian Ignacio 20 June 2011 (has links) (PDF)
The inverse source problem for the Helmholtz equation is studied. An unknown source is to be identified from the knowledge of its radiated wave. The focus is placed on the effect that multi-frequency data has on establishing uniqueness. In particular, we prove that data obtained from finitely many frequencies is not sufficient. On the other hand, if the frequency varies within an open interval of the positive real line, then the source is determined uniquely. An algorithm is based on an incomplete Fourier transform of the measured data and we establish an error estimate under certain regularity assumptions on the source function. We conclude that multi-frequency data not only leads to uniqueness for the inverse source problem, but in fact it contributes with a stability result for the reconstruction of an unknown source.
76

The Inverse Source Problem for Helmholtz

Fernstrom, Hugo, Sträng, Hugo January 2022 (has links)
This paper studies the inverse source problem for the Helmholtz equation with a point source in a two dimensional domain. Given complete boundary data and appropriate discretization Tikhonov regularization is established to be an effective method at finding the point source. Furthermore, it was found that Tikhonov regularization can locate point sources even given significant noise, as well as incomplete boundary data in complicated domains.
77

The Hydrodynamics of Ferrofluid Aggregates

Williams, Alicia M. 25 November 2008 (has links)
Ferrofluids are comprised of subdomain particles of magnetite or iron oxide material that can become magnetized in the presence of a magnetic field. These unique liquids are being incorporated into many new applications due to the ability to control them at a distance using magnetic fields. However, although our understanding of the dynamics of ferrofluids has evolved, many aspects of ferrohydrodynamics remain largely unexplored, especially experimentally. This study is the first to characterize the stability and internal dynamics of accumulating or dispersing ferrofluid aggregates spanning the stable, low Reynolds number behavior to unstable, higher Reynolds numbers. The dynamics of ferrofluid aggregates are governed by the interaction between the bulk flow shear stresses acting to wash away the aggregate and magnetic body forces acting to retain them at the magnet location. This interaction results in different aggregate dynamics, including the stretching and coagulation of the aggregate to Kelvin-Helmholtz shedding from the aggregate interface as identified by focused shadowgraphs. Using TRDPIV, the first time-resolved flow field measurements conducted in ferrofluids reveal the presence of a three-stage process by which the ferrofluid interacts with a pulsatile bulk flow. An expanded parametric study of the effect of Reynolds number, magnetic field strength, and flow unsteadiness reveals that the increased field results can result in the lifting and wash away of the aggregate by means of vortex strengthening. In pulsatile flow, different forms of the three-stage interaction occur based on magnetic field, flow rate, and Reynolds number. / Ph. D.
78

Control of sound transmission into payload fairings using distributed vibration absorbers and Helmholtz resonators

Estève, Simon J. 28 May 2004 (has links)
A new passive treatment to reduce sound transmission into payload fairing at low frequency is investigated. This new solution is composed of optimally damped vibration absorbers (DVA) and optimally damped Helmholtz resonators (HR). A fully coupled structural-acoustic model of a composite cylinder excited by an external plane wave is developed as a first approximation of the system. A modal expansion method is used to describe the behavior of the cylindrical shell and the acoustic cavity; the noise reduction devices are modeled as surface impedances. All the elements are then fully coupled using an impedance matching method. This model is then refined using the digitized mode shapes and natural frequencies obtained from a fairing finite element model. For both models, the noise transmission mechanisms are highlighted and the noise reduction mechanisms are explained. Procedures to design the structural and acoustic absorbers based on single degree of freedom system are modified for the multi-mode framework. The optimization of the overall treatment parameters namely location, tuning frequency, and damping of each device is also investigated using genetic algorithm. Noise reduction of up to 9dB from 50Hz to 160Hz using 4% of the cylinder mass for the DVA and 5% of the cavity volume for the HR can be achieved. The robustness of the treatment performance to changes in the excitation, system and devices characteristics is also addressed. The model is validated by experiments done outdoors on a 10-foot long, 8-foot diameter composite cylinder. The excitation level reached 136dB at the cylinder surface comparable to real launch acoustic environment. With HRs representing 2% of the cylinder volume, the noise transmission from 50Hz to160Hz is reduced by 3dB and the addition of DVAs representing 6.5% of the cylinder mass enhances this performance to 4.3dB. Using the fairing model, a HR+DVA treatment is designed under flight constraints and is implemented in a real Boeing fairing. The treatment is composed of 220 HRs and 60 DVAs representing 1.1% and 2.5% of the fairing volume and mass respectively. Noise reduction of 3.2dB from 30Hz to 90Hz is obtained experimentally. As a natural extension, a new type of adaptive Helmholtz resonator is developed. A tuning law commonly used to track single frequency disturbance is newly applied to track modes driven by broadband excitation. This tuning law only requires information local to the resonator simplifying greatly its implementation in a fairing where it can adapt to shifts in acoustic natural frequencies caused by varying payload fills. A time domain model of adaptive resonators coupled to a cylinder is developed. Simulations demonstrate that multiple adaptive HRs lead to broadband noise reductions similar to the ones obtained with genetic optimization. Experiments conducted on the cylinder confirmed the ability of adaptive HRs to converge to a near optimal solution in a frequency band including multiple resonances. / Ph. D.
79

Advancements in the Design and Development of CubeSat Attitude Determination and Control Testing at the Virginia Tech Space Systems Simulation Laboratory

Wolosik, Anthony Thomas 07 September 2018 (has links)
Among the various challenges involved in the development of CubeSats lies the attitude determination and control of the satellite. The importance of a properly functioning attitude determination and control system (ADCS) on any satellite is vital to the satisfaction of its mission objectives. Due to this importance, three-axis attitude control simulators are commonly used to test and validate spacecraft attitude control systems before flight. However, these systems are generally too large to successfully test the attitude control systems on-board CubeSat-class satellites. Due to their low cost and rapid development time, CubeSats have become an increasingly popular platform used in the study of space science and engineering research. As an increasing number of universities and industries take part in this new approach to small-satellite development, the demand to properly test, verify, and validate their attitude control systems will continue to increase. An approach to CubeSat attitude determination and control simulation is in development at the Virginia Tech Space Systems Simulation Laboratory. The final test setup will consist of an air bearing platform placed inside a square Helmholtz cage. The Helmholtz cage will provide an adjustable magnetic field to simulate that of a low earth orbit (LEO), and the spherical air bearing will simulate the frictionless environment of space. In conjunction, the two simulators will provide an inexpensive and adjustable system for testing any current, and future, CubeSat ADCS prior to flight. Using commercial off the shelf (COTS) components, the Virginia Tech CubeSat Attitude Control Simulator (CSACS), which is a low cost, lightweight air bearing testing platform, will be coupled with a 1.5-m-long square Helmholtz cage design in order to provide a simulated LEO environment for CubeSat ADCS validation. / Master of Science / The attitude determination and control subsystem is a vital component of a spacecraft. This subsystem provides the pointing accuracy and stabilization which allows a spacecraft to successfully perform its mission objectives. The cost and size of spacecraft are dependent on their specific applications; where some may fit in the palm of your hand, others may be the size of a school bus. However, no matter the size, all spacecraft contain some form of onboard attitude determination and control. This leads us to the introduction of a miniaturized class of spacecraft known as CubeSats. Their modular 10×10×10 cm cube structural design allows for both low cost and rapid development time, making CubeSats widely used for space science and engineering research in university settings. While CubeSats provide a low cost alternative to perform local, real-time measurements in orbit, it is still very important to validate the attitude determination and control subsystem before flight to minimize any risk of failure in orbit. Thus, the contents of this thesis will focus on the development, design, and testing of two separate spacecraft attitude determination and control simulation systems used to create an on-orbit environment in a laboratory setting in order to properly validate university-built CubeSats prior to flight.
80

Ljudreduktion av insug : Ljudreducering på batteridrivna lövblåsare / Sound reduction of intake

Appell, Albin, Sandqvist, Jesper January 2024 (has links)
The purpose of this report was to investigate how an intake for a battery-powered leaf blowershould be designed to reduce sound emissions. A reduced sound emission improves both theworking environment for the user but also reduces disturbances to the surroundings. The workbegan with a market analysis of different leaf blowers’ intakes. Other industries and differenttypes of noise reduction systems were also investigated. The market analysis stated that animplementation of Helmholtz resonators in an intake has great potential to reduce the tonalsound that a battery-powered leaf blower emits. As the sound image of a battery-powered leafblower is very tonal, the idea with resonators was to reduce the tonal spikes to achieve a lowersound level. If the work could prove that the resonators provide a high effect in the area aroundthe tonal sound spikes, then with some optimization, the resonators could be adapted and lowerthe sound equally at these frequencies. The work then progressed with testing whetherresonators work effectively. The result of the test showed that resonators can dampenfrequencies with high power, which led to the work continuing with a Concept Generation. The concept generation resulted in four different concepts that all had different placements andimplementations of resonators in the intake. These concepts were tested again and comparedto a reference that did not have any sound dampening features. From this test, two conceptsperformed at a high level, which were Back Cone and Big and Large, and these were furtherdeveloped. Further development produced four different variants of Big and Large. These werevariants with different numbers of resonators. Back Cone was produced in three differentvariants with different sizes of resonators. The purpose of these variants was to investigate howthe size and number of resonators affect the sound dampening ability. These variants weretested according to ISO-22868:2021. The final test revealed that four prototypes achieve therequired value for sound minimization. However, several external parameters emerged that affected the test results. One parameter was likely a floor reflex between the leaf blower and themicrophone directly behind the intake. The influence of the external parameters leads to thecredibility of the test results being unclear and thus these prototypes cannot be approved. During the same test, a speaker was used as the sound source instead of the fan. In this test, itappears the same four prototypes achieve a sound-minimizing effect that achieves the requiredeffect in the same range as in the tests with a fan as a sound source. Even in this test, there wereseveral external parameters that affected the result and therefore the prototypes could not beapproved with certainty according to the requirements specification. The project can be summed up by stating that resonators have great potential to reduce thetonal sound that a battery-powered leaf blower generates. The project has also shown howdifferent placements of resonators affect the sound dampening effect. During test two, a prototype emerged that can be approved according to the requirement specification as itperformed 17,5 dB maximum sound dampening effect right above the tonal frequency and sixdB at the right frequency. The project cannot determine with certainty if the variants of intakeused in the final tests meet the requirement specification due to the external parameters thataffected the results. However, the project can state that the resonators have achieved an effectin all tests. The maximum effect achieved was analysed in test one and was 27 dB soundminimization. The project ends by proposing further work such as investigating how an intakewith resonators should be designed to be manufactured in mass production. The influence ofthe thickness of the intakes surface boundary layer on the effect of the resonator should also beexamined, as well as the distance of the resonator to the fan and the outer edge of the intakeshould be examined together with the several other points presented in the chapter Discussions.

Page generated in 0.047 seconds