Spelling suggestions: "subject:"herpes simplex"" "subject:"terpes simplex""
231 |
Contribution de la Glycoprotéine M dans la Sortie de HSV-1Zhang, Jie 06 1900 (has links)
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause
l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement
considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial
(communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer
la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le
corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun
vaccin n’a été prouvé efficace pour contrôler l’infection herpétique.
HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside
icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent
dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes
étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la
propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines
d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la
famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV),
un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e.
l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant
spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]).
Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De
plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se
localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection.
L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la
fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici,
nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En
phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus
ii
dépendante. Cela se produit avant la réorganisation du TGN normalement induite par
l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et
spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction
proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait
avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la
deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM
dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine
critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal
cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à
l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du
virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules
transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la
queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des
plaques. L'analyse de ces mutants par microscopie électronique a démontré une
accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus
de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais
absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire.
Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés
par le système de double-hybride nous a permis de proposer plusieurs candidats
susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus. / Herpes Simplex Virus type 1 (HSV-1) is an infectious agent causing herpes, which
affects a large population worldwide. Herpes is generally considered a benign disease
whose most common form is oral herpes (commonly called "cold sores"), but it can be very
serious and cause herpetic blindness and encephalitis, and even be lethal in some cases. The
virus can persist throughout life in the body of its host. So far, no treatment can eliminate
the virus and no vaccine has proven effective in controlling herpes infections.
HSV-1 has a double-stranded DNA genome embedded in an icosahedral capsid
surrounded by a lipid envelope. Thirteen viral glycoproteins are located in the envelope and
are known or believed to play different roles in different stages of the viral replication cycle,
including attachment, entry, assembly, and viral propagation. Among these envelope
glycoproteins, glycoprotein M (gM) is the only nonessential glycoprotein but is conserved
in all the herpesviridae family. Recently, the homologue of gM in Pseudorabies virus
(PRV), another herpesvirus, has been implicated in the final phase of assembly (e.g. the
cytoplasmic envelopment) at the trans-Golgi network (TGN) ([1]). However, it was
suggested that this does not apply to HSV-1 ([2]). Moreover, unlike its TGN localization in
transfected cells, HSV-1 gM localizes to the nuclear membrane and on the perinuclear
virions during infection.
The objective of the project presented here was to clarify the relationship of the
location and function of HSV-1 gM in the context of an infection. In the results reported
here, we first describe a specific and active mechanism of nuclear targeting of HSV-1 gM. In
early phase of infection, gM is targeted to the nuclear membrane in a virus dependent
manner. This occurs before the known reorganization of the TGN induced by the virus and
before gM enters the secretory pathway. This active and specific nuclear targeting of gM
seemingly does not depend on the functional interaction partners proposed in the literature.
These data suggest that nuclear gM could have a new role independent of that in the final
envelopment in the cytoplasm. In the second part of the work presented here, we focused
iv
our efforts on the role of gM in virus assembly in the late phase of infection and define an
important functional domain within gM. Our results highlight the importance of the
carboxyl-terminal domain of gM in the intracellular transport of gM from endoplasmic
reticulum (ER) to Golgi apparatus, in the cytoplasmic envelopment of the capsids and the
intercellular spread of the virus. Hence, gM ER export was completely compromised in
transfected cells after deletion of its C-terminal tail. Deletion of the gM cytoplasmic tail in
mutant viruses resulted in a slight reduction in viral titer and plaque size. The analysis of
these mutants by electron microscopy showed an accumulation of nucleocapsids without
envelope in the cytoplasm compared to wild-type virus. Interestingly, this phenotype is
apparent in BHK cells but not in 143B cells, hinting that the importance of gM may be cell
type specific. Finally, screening of interaction partners of C-terminal domain of gM
identified by the two-hybrid system allowed us to propose several interesting candidates
that may regulate the function of gM in the virus morphogenesis and propagation.
|
232 |
Caractérisation de la migration du virus Herpès simplex de type 1 (HSV-1) par protéomiqueLoret, Sandra 02 1900 (has links)
Le virus Herpès simplex de type 1 (HSV-1), agent étiologique des feux sauvages, possède une structure multicouche comprenant une capside icosaédrale qui protège le génome viral d’ADN, une couche protéique très structurée appelée tégument et une enveloppe lipidique dérivant de la cellule hôte et parsemée de glycoprotéines virales. Tous ces constituants sont acquis séquentiellement à partir du noyau, du cytoplasme et du réseau trans-golgien. Cette structure multicouche confère à HSV-1 un potentiel considérable pour incorporer des protéines virales et cellulaires. Toutefois, l’ensemble des protéines qui composent ce virus n’a pas encore été élucidé. De plus, malgré son rôle critique à différentes étapes de l’infection, le tégument demeure encore mal défini et ce, tant dans sa composition que dans la séquence d’addition des protéines qui le composent. Toutes ces incertitudes quant aux mécanismes impliqués dans la morphogenèse du virus nous amènent à l’objectif de ce projet, soit la caractérisation du processus de maturation d’HSV-1.
Le premier article présenté dans cette thèse et publié dans Journal of Virology s’attarde à la caractérisation protéique des virus extracellulaires matures. Grâce à l’élaboration d’un protocole d’isolation et de purification de ces virions, une étude protéomique a pu être effectuée. Celle-ci nous a permis de réaliser une cartographie de la composition globale en protéines virales des virus matures (8 protéines de la capside, 23 protéines du tégument et 13 glycoprotéines) qui a fait la page couverture de Journal of Virology. De plus, l’incorporation potentielle de 49 protéines cellulaires différentes a été révélée.
Lors de cette étude protéomique, nous avons aussi relevé la présence de nouveaux composants du virion dont UL7, UL23, ICP0 et ICP4. Le deuxième article publié dans Journal of General Virology focalise sur ces protéines via une analyse biochimique afin de mieux comprendre les interactions et la dynamique du tégument. Ces résultats nous révèlent que, contrairement aux protéines ICP0 et ICP4, UL7 et UL23 peuvent être relâchées de la capside en présence de sels et que les cystéines libres jouent un rôle dans cette relâche. De plus, cet article met en évidence la présence d’ICP0 et d’ICP4 sur les capsides nucléaires suggérant une acquisition possible du tégument au noyau.
La complexité du processus de morphogenèse du virus ainsi que la mise en évidence d’acquisition de protéines du tégument au noyau nous ont incités à poursuivre nos recherches sur la composition du virus à un stade précoce de son cycle viral. Les capsides C matures, prémisses des virus extracellulaires, ont donc été isolées et purifiées grâce à un protocole innovateur basé sur le tri par cytométrie en flux. L’analyse préliminaire de ces capsides par protéomique a permis d’identifier 28 protéines virales et 39 protéines cellulaires. Les données recueilles, comparées à celles obtenues avec les virus extracellulaires, suggèrent clairement un processus séquentiel d’acquisition des protéines du tégument débutant dans le noyau, site d’assemblage des capsides.
Finalement, tous ces résultats contribuent à une meilleure compréhension du processus complexe de maturation d’HSV-1 via l’utilisation de techniques variées et innovatrices, telles que la protéomique et la cytométrie en flux, pouvant être appliquées à d’autres virus mais aussi permettre le développement de meilleurs traitements pour vaincre l’HSV-1. / Herpes simplex virus type 1 (HSV-1), the etiological agent of cold sores, has a multilayered structure that includes an icosahedral capsid that protects the viral DNA genome, a highly structured proteinaceous layer called tegument and a host-derived lipid envelope studded with viral glycoproteins. All these constituents are sequentially acquired from the nucleus, the cytoplasm and the trans-Golgi network. This multilayered structure confers to HSV-1 a considerable potential to incorporate viral and cellular proteins; however, all the proteins that compose this virus have not yet been elucidated. Moreover, despite its critical role at different stages of infection, the tegument is still poorly defined both in its composition and its sequence of addition of proteins. All these uncertainties about the mechanisms involved in the morphogenesis of the virus lead us to the goal of this project, which is the characterization of the maturation process of HSV-1.
The first article presented in this thesis and published in Journal of Virology focuses on the protein characterization of extracellular mature virus. After developing a protocol for the isolation and purification of these virions, a proteomics study was performed. It allowed us to map the global viral protein composition of mature virions (8 capsid proteins, 23 tegument proteins and 13 glycoproteins), which made the cover page of Journal of Virology. Moreover, the potential incorporation of 49 cellular proteins was revealed.
During this proteomics study, we confirmed the incorporation of novel virion components including UL7, UL23, ICP0 and ICP4. The second article published in Journal of General Virology focuses on these viral proteins by using a biochemical analysis to better understand the interactions and dynamic of the tegument. Our results revealed that, unlike ICP0 and ICP4 proteins, UL7 and UL23 can be released from the capsid in the presence of salts and that free cysteines play a role in this release. Moreover, this article highlights the presence of ICP0 and ICP4 on the nuclear capsids suggesting a potential acquisition of tegument proteins in the nucleus.
The complexity of the viral morphogenesis process and the discovery of the tegument acquisition in the nucleus led us to pursue our research on the virus composition at an early stage of its viral cycle. The nuclear C capsids, precursors to the extracellular virus, were isolated and purified with an innovative protocol based on fluorescence activated cell sorting (FACS). The preliminary analysis of these capsids by proteomics allows us to identify 28 viral proteins and 39 cellular proteins. The collected data, compared to those obtained with extracellular viruses, clearly suggest a sequential process of tegument proteins acquisition starting in the nucleus, the assembly site of HSV-1 capsids.
Finally, all these results contribute to a better understanding of the complex process of HSV-1 maturation by using varied and innovative techniques such as proteomic and FACS, which can be applied to other viruses and allow the development of better treatments to fight HSV-1.
|
233 |
Atividade da proteína quinase dependente de RNA (PKR) no sistema nociceptivo em um modelo experimental de neuropatia periférica de origem viral / Double stranded RNA-activated protein kinase (PKR) activity in the nociceptive system in an experimental model of peripheral neuropathy of viral originMota, Clarissa Maria Dias 25 February 2016 (has links)
A proteína quinase dependente de RNA (PKR) é uma molécula sentinela ativada em situações de estresse celular, incluindo infecções virais. A ativação de PKR por meio de sua fosforilação aciona cascatas de sinalização intracelular envolvidas em respostas inflamatórias e inibição da síntese protéica. Dados prévios do nosso laboratório sugerem que PKR está envolvida na hiperalgesia térmica de origem inflamatória. No presente estudo, foi investigado o papel da PKR na hiperalgesia térmica induzida pelo vírus da herpes simples tipo 1 (HSV1), durante as fases herpética e pós-herpética, combinando métodos comportamentais, genéticos, farmacológicos e moleculares. Camundongos C57bl/6, PKR+/+ e PKR-/- machos foram inoculados com HSV1. Os grupos controle foram inoculados com HSV1 inativo. Alodínia mecânica e hiperalgesia térmica foram monitoradas antes da inoculação do vírus e 8, 14, 21 e 28 dias após a inoculação. A curva dose e temporesposta e o teste da capsaicina foram realizados no 8º e 21º dias após a inoculação do vírus. Também nos períodos herpético e pós-herpético, foi investigado o perfil de expressão de proteínas envolvidas nas vias de sinalização de PKR (PKR, eIF2?, PACT, IKK e PP2A?), assim como o efeito da inibição de PKR pelo monitoramento da fosforilação de PKR, IKK?/?, P38, JNK, ERK1,2 e STAT3, e expressão de CaMKII? e TRPV1 nos GRD (L3-L6) ipsilateralmente à pata inoculada. Alodínia mecânica e hiperalgesia térmica ficaram evidentes até 28 dias após a inoculação. Camundongos PKR-/- desenvolveram alodínia mecânica, mas não hiperalgesia térmica, quando comparados com animais PKR+/+. A inibição sistêmica de PKR reverteu a hiperalgesia térmica de modo tempo- e dose-dependente e preveniu o comportamento nocifensivo induzido por capsaicina, enquanto PKR-/- apresentaram resposta nocifensiva praticamente ausente em ambas as fases herpética e pósherpética. Houve aumento da expressão de PP2A? e da fosforilação de PKR, IKK?/? e eIF2?, durante os períodos herpético e pós-herpético, e de PACT na fase pósherpética. A inibição de PKR promoveu o aumento da fosforilação de P38 em ambas as fases, e redução da fosforilação de PLC?1 acompanhada do retorno da fosforilação de Akt e STAT3 ao nível do grupo controle e o aumento da expressão de Ca-MKII? na fase herpética. Já na fase pós-herpética, reduziu a fosforilação de JNK e Akt e a expressão de Ca-MKII?, retornou a fosforilação de ERK1,2, PLC?1 e STAT3 ao nível do grupo controle e aumentou a expressão de TRPV1. Nossos resultados indicam que a atividade de PKR desempenha papel essencial na hiperalgesia térmica induzida por infecção pelo HSV1 / Double stranded RNA-activated protein kinase (PKR) is a sentinel molecule activated by cellular stress conditions, including viral infections. PKR activation by phosphorylation triggers cascades involved in inflammatory response and protein synthesis suppression. Our previous data suggest that PKR is involved in the inflammatory thermal hyperalgesia. Here we investigated the role played by PKR on thermal hyperalgesia induced by herpes simplex virus type-1 (HSV-1), during herpetic and post-herpetic phases, by combining behavioral, genetic, pharmacological, and molecular methods. Adult male C57bl/6, PKR+/+ and PKR-/- mice were inoculated with HSV-1. Control groups were inoculated with inactive (mock) HSV1. Mechanical allodynia and thermal hyperalgesia were monitored before virus inoculation and 8, 14, 21, and 28 days post-inoculation. The dose- and timeresponse curve and the capsaicin test were performed at 8th and 21st days post virus inoculation. Also in the herpetic and post-herpetic periods, was investigated the expression profile of proteins involved in the PKR signaling pathways (PKR, eIF2?, PACT, IKK and PP2A?), and the effect of PKR inhibition by monitoring PKR, IKK?/?, P38, JNK, ERK1,2, and STAT3 phosphorylation, and Ca-MKII? and TRPV1 expression in the dorsal root ganglia (L3-L6) ipsilaterally to the inoculated paw. Mechanical allodynia and thermal hyperalgesia became evident until 28 days postinnoculation. PKR-/- mice developed mechanical allodynia but not thermal hyperalgesia, when compared with PKR+/+ mice. Systemic PKR inhibition reversed thermal hyperalgesia in a dose and time-dependent manner, and prevented the capsaicin-induced nocifensive behavior, whereas PKR-/- showed no nocifensive behavior almost absent in both herpetic and post-herpetic phases. There was increased expression of PP2A? and the phosphorylation of PKR, IKK?/?, and eIF2?, during herpetic and post-herpetic periods, and PACT in the post-herpetic phase. PKR inhibition increased P38 phosphorylation in both phases, and reduction of PLC?1 phosphorylation together with the return of the Akt and STAT3 phosphorylation to the control group level, and enhanced Ca-MKII? expression in the herpetic phase. At the post-herpetic phase, suppressed JNK and Akt, and Ca-MKII? expression returned ERK1,2, PLC?1 and STAT3 phosphorylation to control group level and increased TRPV1 expression. The data indicate that PKR activity plays an essential role in the HSV-1 infection-induced thermal hyperalgesia
|
234 |
Rôle des modulateurs de la protéine kinase D dans la propagation du virus herpès simplex de type 1Roussel, Élisabeth 06 1900 (has links)
No description available.
|
235 |
Studies of viral and cellular proteins involved in herpes simplex virus type-1 egressAhmed, Md Firoz January 2019 (has links)
The egress pathway of herpes simplex virus-1 (HSV-1) is a complicated process mediated by co-ordinated activity of several virus glycoproteins. The virions are first assembled and enveloped at trans-Golgi-network (TGN) or endosome membranes and then travel through a guided pathway that is directed towards the cell adherent points for secretion. Once secreted the vast majority of virions remain associated with the extracellular membrane of cells and very few free virions are released into the culture medium (< 1%). The mechanisms that mediate both the targeted secretion of newly assembled virions at cell contact points and post-secretion attachment of virions with the extracellular surface of cells are poorly understood, and were the topics of this research. In this thesis, an HSV-1 passage mutant of increased virion secretion phenotype had been studied. Genome sequencing of the mutant virus identified mutations in three viral envelope proteins. Study of recombinant viruses that were constructed based on those three mutations revealed that a single amino acid change in glycoprotein I (gI) of glycine to arginine at residue 39 is responsible for the increased release of virus. The result suggests the principal effect of this mutation is to modify the secretory pathway used by virions during their release from infected cells. Data also suggests a role of gC in the attachment of virions to the extracellular surface of cells after egress. In the context of HSV-1 envelopment and egress glycoprotein E (gE), which forms a heterodimeric complex with gI (gE/gI), is known to be important. The gE/gI complex has been shown to interact with many tegument proteins and have a redundant role in secondary envelopment. The gE/gI complex has been also proposed to colocalise with various cellular components and sort the nascent virions to cell contact points. However, there is little understanding of the cellular proteins that gE/gI interact with, or the mechanisms that mediate targeted secretion of virions. This research has identified a novel interactome of gE/gI by mass-spectrometric analysis utilising stable isotope labelling with amino acids in cell culture (SILAC) medium. Among the cellular interactome obtained, Nipsnap1 was validated by co-precipitation assays from both infected and transfected cells, and furthermore using cell free systems, suggesting gE and Nipsnap1 directly interact. Nipsnap1 and its homologue Nipsnap2 have been proposed to contribute in vesicle transport and membrane fusion in cells. Using CRISPR-Cas9 technology these proteins were knocked out in a keratinocyte cell line (HaCaT) to investigate their role in HSV-1 egress. However, little or no effect on HSV-1 egress could be observed upon loss of either or both of these proteins suggesting the biological significance of gE-Nipsnap1 interaction may not be directly linked to any egress function of gE/gI. Two further interesting 'hits' from the gE/gI interactome were interferon-induced transmembrane protein type-2 (IFITM2), a virus restriction factor, and Myoferlin that has a putative role in endocytic vesicle recycling. This study could validate gE-Myoferlin interaction and co-localisation in infected or transfected cells however, functional significance of this interaction remains to be determined. Overall, the research of this thesis has provided a better understanding of the role of the gE/gI complex in HSV-1 egress and investigated the role of some interesting cellular proteins in the context of virion egress.
|
236 |
Contribution de la Glycoprotéine M dans la Sortie de HSV-1Zhang, Jie 06 1900 (has links)
Le Virus Herpès Simplex de type 1 (HSV-1) est un agent infectieux qui cause
l’herpès chez une grande proportion de la population mondiale. L’herpès est généralement
considéré comme une maladie bénigne dont la forme la plus commune est l'herpès labial
(communément appelé « bouton de fièvre »), mais elle peut se révéler très sérieuse et causer
la cécité et l’encéphalite, voir létale dans certain cas. Le virus persiste toute la vie dans le
corps de son hôte. Jusqu'à présent, aucun traitement ne peut éliminer le virus et aucun
vaccin n’a été prouvé efficace pour contrôler l’infection herpétique.
HSV-1 est un virus avec un génome d’ADN bicaténaire contenu dans une capside
icosaèdrale entourée d’une enveloppe lipidique. Treize glycoprotéines virales se trouvent
dans cette enveloppe et sont connues ou supposées jouer des rôles distincts dans différentes
étapes du cycle de réplication viral, incluant l'attachement, l'entrée, l’assemblage, et la
propagation des virus. La glycoprotéine M (gM) qui figure parmi ces glycoprotéines
d’enveloppe, est la seule glycoprotéine non essentielle mais est conservée dans toute la
famille herpesviridae. Récemment, l’homologue de gM dans le Pseudorabies virus (PRV),
un autre herpesvirus, a été impliqué dans la phase finale de l’assemblage (i.e.
l’enveloppement cytoplasmique) au niveau du réseau trans-Golgi (TGN) en reconnaissant
spécifiquement des protéines tégumentaires et d’autres glycoprotéines d’enveloppe ([1]).
Toutefois, il a été proposé que cette hypothèse ne s’applique pas pour le HSV-1 ([2]). De
plus, contrairement à la localisation au TGN dans les cellules transfectées, HSV-1 gM se
localise dans la membrane nucléaire et sur les virions périnucléaires durant une infection.
L’objectif du projet présenté ici était d’éclaircir la relation de la localisation et la
fonction de HSV-1 gM dans le contexte d’une infection. Dans les résultats rapportés ici,
nous décrivons tout abord un mécanisme spécifique de ciblage nucléaire de HSV-1 gM. En
phase précoce d’une infection, gM est ciblée à la membrane nucléaire d'une manière virus
ii
dépendante. Cela se produit avant la réorganisation du TGN normalement induite par
l’infection et avant que gM n’entre dans la voie de sécrétion. Ce ciblage nucléaire actif et
spécifique de gM ne semble pas dépendre des plusieurs des partenaires d’interaction
proposés dans la littérature. Ces données suggèrent que la forme nucléaire de gM pourrait
avoir un nouveau rôle indépendant de l’enveloppement final dans le cytoplasme. Dans la
deuxième partie du travail présenté ici, nous avons concentré nos efforts sur le rôle de gM
dans l’assemblage du virus en phase tardive de l’infection et en identifiant un domaine
critique de gM. Nos résultats mettent en valeur l’importance du domaine carboxyl-terminal
cytoplasmique de gM dans le transport de gM du réticulum endoplasmique (RE) à
l’appareil de Golgi, dans l’enveloppement cytoplasmique et la propagation intercellulaire du
virus. Ainsi, l’export du RE de gM a été complètement compromis dans les cellules
transfectées exprimant un mutant de gM dépourvu de sa région C-terminale. La délétion la
queue cytoplasmique de gM cause une réduction légère du titre viral et de la taille des
plaques. L'analyse de ces mutants par microscopie électronique a démontré une
accumulation des nucléocapsides sans enveloppe dans le cytoplasme par rapport aux virus
de type sauvage. Étrangement, ce phénotype était apparent dans les cellules BHK mais
absent dans les cellules 143B, suggérant que la fonction de gM dépende du type cellulaire.
Finalement, le criblage de partenaires d’interaction du domaine C-terminal de gM identifiés
par le système de double-hybride nous a permis de proposer plusieurs candidats
susceptibles de réguler la fonction de gM dans la morphogénèse et la propagation de virus. / Herpes Simplex Virus type 1 (HSV-1) is an infectious agent causing herpes, which
affects a large population worldwide. Herpes is generally considered a benign disease
whose most common form is oral herpes (commonly called "cold sores"), but it can be very
serious and cause herpetic blindness and encephalitis, and even be lethal in some cases. The
virus can persist throughout life in the body of its host. So far, no treatment can eliminate
the virus and no vaccine has proven effective in controlling herpes infections.
HSV-1 has a double-stranded DNA genome embedded in an icosahedral capsid
surrounded by a lipid envelope. Thirteen viral glycoproteins are located in the envelope and
are known or believed to play different roles in different stages of the viral replication cycle,
including attachment, entry, assembly, and viral propagation. Among these envelope
glycoproteins, glycoprotein M (gM) is the only nonessential glycoprotein but is conserved
in all the herpesviridae family. Recently, the homologue of gM in Pseudorabies virus
(PRV), another herpesvirus, has been implicated in the final phase of assembly (e.g. the
cytoplasmic envelopment) at the trans-Golgi network (TGN) ([1]). However, it was
suggested that this does not apply to HSV-1 ([2]). Moreover, unlike its TGN localization in
transfected cells, HSV-1 gM localizes to the nuclear membrane and on the perinuclear
virions during infection.
The objective of the project presented here was to clarify the relationship of the
location and function of HSV-1 gM in the context of an infection. In the results reported
here, we first describe a specific and active mechanism of nuclear targeting of HSV-1 gM. In
early phase of infection, gM is targeted to the nuclear membrane in a virus dependent
manner. This occurs before the known reorganization of the TGN induced by the virus and
before gM enters the secretory pathway. This active and specific nuclear targeting of gM
seemingly does not depend on the functional interaction partners proposed in the literature.
These data suggest that nuclear gM could have a new role independent of that in the final
envelopment in the cytoplasm. In the second part of the work presented here, we focused
iv
our efforts on the role of gM in virus assembly in the late phase of infection and define an
important functional domain within gM. Our results highlight the importance of the
carboxyl-terminal domain of gM in the intracellular transport of gM from endoplasmic
reticulum (ER) to Golgi apparatus, in the cytoplasmic envelopment of the capsids and the
intercellular spread of the virus. Hence, gM ER export was completely compromised in
transfected cells after deletion of its C-terminal tail. Deletion of the gM cytoplasmic tail in
mutant viruses resulted in a slight reduction in viral titer and plaque size. The analysis of
these mutants by electron microscopy showed an accumulation of nucleocapsids without
envelope in the cytoplasm compared to wild-type virus. Interestingly, this phenotype is
apparent in BHK cells but not in 143B cells, hinting that the importance of gM may be cell
type specific. Finally, screening of interaction partners of C-terminal domain of gM
identified by the two-hybrid system allowed us to propose several interesting candidates
that may regulate the function of gM in the virus morphogenesis and propagation.
|
237 |
Caractérisation de la migration du virus Herpès simplex de type 1 (HSV-1) par protéomiqueLoret, Sandra 02 1900 (has links)
Le virus Herpès simplex de type 1 (HSV-1), agent étiologique des feux sauvages, possède une structure multicouche comprenant une capside icosaédrale qui protège le génome viral d’ADN, une couche protéique très structurée appelée tégument et une enveloppe lipidique dérivant de la cellule hôte et parsemée de glycoprotéines virales. Tous ces constituants sont acquis séquentiellement à partir du noyau, du cytoplasme et du réseau trans-golgien. Cette structure multicouche confère à HSV-1 un potentiel considérable pour incorporer des protéines virales et cellulaires. Toutefois, l’ensemble des protéines qui composent ce virus n’a pas encore été élucidé. De plus, malgré son rôle critique à différentes étapes de l’infection, le tégument demeure encore mal défini et ce, tant dans sa composition que dans la séquence d’addition des protéines qui le composent. Toutes ces incertitudes quant aux mécanismes impliqués dans la morphogenèse du virus nous amènent à l’objectif de ce projet, soit la caractérisation du processus de maturation d’HSV-1.
Le premier article présenté dans cette thèse et publié dans Journal of Virology s’attarde à la caractérisation protéique des virus extracellulaires matures. Grâce à l’élaboration d’un protocole d’isolation et de purification de ces virions, une étude protéomique a pu être effectuée. Celle-ci nous a permis de réaliser une cartographie de la composition globale en protéines virales des virus matures (8 protéines de la capside, 23 protéines du tégument et 13 glycoprotéines) qui a fait la page couverture de Journal of Virology. De plus, l’incorporation potentielle de 49 protéines cellulaires différentes a été révélée.
Lors de cette étude protéomique, nous avons aussi relevé la présence de nouveaux composants du virion dont UL7, UL23, ICP0 et ICP4. Le deuxième article publié dans Journal of General Virology focalise sur ces protéines via une analyse biochimique afin de mieux comprendre les interactions et la dynamique du tégument. Ces résultats nous révèlent que, contrairement aux protéines ICP0 et ICP4, UL7 et UL23 peuvent être relâchées de la capside en présence de sels et que les cystéines libres jouent un rôle dans cette relâche. De plus, cet article met en évidence la présence d’ICP0 et d’ICP4 sur les capsides nucléaires suggérant une acquisition possible du tégument au noyau.
La complexité du processus de morphogenèse du virus ainsi que la mise en évidence d’acquisition de protéines du tégument au noyau nous ont incités à poursuivre nos recherches sur la composition du virus à un stade précoce de son cycle viral. Les capsides C matures, prémisses des virus extracellulaires, ont donc été isolées et purifiées grâce à un protocole innovateur basé sur le tri par cytométrie en flux. L’analyse préliminaire de ces capsides par protéomique a permis d’identifier 28 protéines virales et 39 protéines cellulaires. Les données recueilles, comparées à celles obtenues avec les virus extracellulaires, suggèrent clairement un processus séquentiel d’acquisition des protéines du tégument débutant dans le noyau, site d’assemblage des capsides.
Finalement, tous ces résultats contribuent à une meilleure compréhension du processus complexe de maturation d’HSV-1 via l’utilisation de techniques variées et innovatrices, telles que la protéomique et la cytométrie en flux, pouvant être appliquées à d’autres virus mais aussi permettre le développement de meilleurs traitements pour vaincre l’HSV-1. / Herpes simplex virus type 1 (HSV-1), the etiological agent of cold sores, has a multilayered structure that includes an icosahedral capsid that protects the viral DNA genome, a highly structured proteinaceous layer called tegument and a host-derived lipid envelope studded with viral glycoproteins. All these constituents are sequentially acquired from the nucleus, the cytoplasm and the trans-Golgi network. This multilayered structure confers to HSV-1 a considerable potential to incorporate viral and cellular proteins; however, all the proteins that compose this virus have not yet been elucidated. Moreover, despite its critical role at different stages of infection, the tegument is still poorly defined both in its composition and its sequence of addition of proteins. All these uncertainties about the mechanisms involved in the morphogenesis of the virus lead us to the goal of this project, which is the characterization of the maturation process of HSV-1.
The first article presented in this thesis and published in Journal of Virology focuses on the protein characterization of extracellular mature virus. After developing a protocol for the isolation and purification of these virions, a proteomics study was performed. It allowed us to map the global viral protein composition of mature virions (8 capsid proteins, 23 tegument proteins and 13 glycoproteins), which made the cover page of Journal of Virology. Moreover, the potential incorporation of 49 cellular proteins was revealed.
During this proteomics study, we confirmed the incorporation of novel virion components including UL7, UL23, ICP0 and ICP4. The second article published in Journal of General Virology focuses on these viral proteins by using a biochemical analysis to better understand the interactions and dynamic of the tegument. Our results revealed that, unlike ICP0 and ICP4 proteins, UL7 and UL23 can be released from the capsid in the presence of salts and that free cysteines play a role in this release. Moreover, this article highlights the presence of ICP0 and ICP4 on the nuclear capsids suggesting a potential acquisition of tegument proteins in the nucleus.
The complexity of the viral morphogenesis process and the discovery of the tegument acquisition in the nucleus led us to pursue our research on the virus composition at an early stage of its viral cycle. The nuclear C capsids, precursors to the extracellular virus, were isolated and purified with an innovative protocol based on fluorescence activated cell sorting (FACS). The preliminary analysis of these capsids by proteomics allows us to identify 28 viral proteins and 39 cellular proteins. The collected data, compared to those obtained with extracellular viruses, clearly suggest a sequential process of tegument proteins acquisition starting in the nucleus, the assembly site of HSV-1 capsids.
Finally, all these results contribute to a better understanding of the complex process of HSV-1 maturation by using varied and innovative techniques such as proteomic and FACS, which can be applied to other viruses and allow the development of better treatments to fight HSV-1.
|
238 |
Study of the pathophysiological role of nitric oxide and nitrative stress in brain: translational effects on the cleavage of the amyloid precursor protein in Alzheimer's disease and post-translational effects on fibrinogen in brain ischemiaIll-Raga, Gerard 28 September 2010 (has links)
Nitric oxide (NO) is a neurotransmitter involved in memory processes. Currently, the
only recognized physiological signalling pathway controlled by NO is the activation of
guanylyl cyclase. In this thesis, we propose an alternative NO-signalling pathway that
involves the Heme-regulated eukaryotic initiation factor-2a kinase (HRI) and eIF2a
phosphorylation. We have found that the enzyme BACE1, a key protein in Alzheimer’s
disease (AD), is controlled by this novel pathway. This pathway would be involved in
the physiology of memory formation and learning processes. We have also studied how
an external stress factor, the Herpes Simplex Virus 1, can disrupt this cascade leading to
a pathological increase in BACE1 and amyloid ß-peptide (Aß) production. Aß
aggregates forming fibrils that generate free radicals. These react with NO producing
peroxynitrite, which contribute to AD progression. Since NO turns toxic when produced
in a pro-oxidant environment we have also studied the effect of peroxynitrite in Stroke. / L’òxid nítric (NO) és un neurotransmissor involucrat en processos de memòria.
Actualment, l’única cascada de senyalització fisiològica controlada per NO consisteix
en l’activació de la guanilat ciclasa. En aquesta tesi, en proposem una d’alternativa que
inclou la fosforilació de eIF2a per la Heme-regulated eukaryotic initiation factor-2a
kinase (HRI). Hem mostrat com l’enzim BACE1, una proteïna clau en la malaltia
d’Alzheimer (AD), és controlat per aquesta nova cascada de senyalització, que podria
estar involucrada en la fisiologia de l’aprenentatge i la memòria. També hem estudiat
com un factor d’estrès extern, l’ Herpes Simplex Virus 1, pot pertorbar aquesta cascada
donant lloc a increments patològics en BACE1 i pèptid ß-amiloide (Aß). L’Aß agrega
formant fibril·les que generen radicals lliures. Aquests reaccionen químicament amb NO
produint peroxinitrit, que contribueix a la progressió de l’AD. Pel fet que l’NO esdevé
tòxic quan és produït en un entorn pro-oxidant, hem estudiat també l’impacte que el
peroxinitrit té en l’ictus.
|
239 |
Atividade da proteína quinase dependente de RNA (PKR) no sistema nociceptivo em um modelo experimental de neuropatia periférica de origem viral / Double stranded RNA-activated protein kinase (PKR) activity in the nociceptive system in an experimental model of peripheral neuropathy of viral originClarissa Maria Dias Mota 25 February 2016 (has links)
A proteína quinase dependente de RNA (PKR) é uma molécula sentinela ativada em situações de estresse celular, incluindo infecções virais. A ativação de PKR por meio de sua fosforilação aciona cascatas de sinalização intracelular envolvidas em respostas inflamatórias e inibição da síntese protéica. Dados prévios do nosso laboratório sugerem que PKR está envolvida na hiperalgesia térmica de origem inflamatória. No presente estudo, foi investigado o papel da PKR na hiperalgesia térmica induzida pelo vírus da herpes simples tipo 1 (HSV1), durante as fases herpética e pós-herpética, combinando métodos comportamentais, genéticos, farmacológicos e moleculares. Camundongos C57bl/6, PKR+/+ e PKR-/- machos foram inoculados com HSV1. Os grupos controle foram inoculados com HSV1 inativo. Alodínia mecânica e hiperalgesia térmica foram monitoradas antes da inoculação do vírus e 8, 14, 21 e 28 dias após a inoculação. A curva dose e temporesposta e o teste da capsaicina foram realizados no 8º e 21º dias após a inoculação do vírus. Também nos períodos herpético e pós-herpético, foi investigado o perfil de expressão de proteínas envolvidas nas vias de sinalização de PKR (PKR, eIF2?, PACT, IKK e PP2A?), assim como o efeito da inibição de PKR pelo monitoramento da fosforilação de PKR, IKK?/?, P38, JNK, ERK1,2 e STAT3, e expressão de CaMKII? e TRPV1 nos GRD (L3-L6) ipsilateralmente à pata inoculada. Alodínia mecânica e hiperalgesia térmica ficaram evidentes até 28 dias após a inoculação. Camundongos PKR-/- desenvolveram alodínia mecânica, mas não hiperalgesia térmica, quando comparados com animais PKR+/+. A inibição sistêmica de PKR reverteu a hiperalgesia térmica de modo tempo- e dose-dependente e preveniu o comportamento nocifensivo induzido por capsaicina, enquanto PKR-/- apresentaram resposta nocifensiva praticamente ausente em ambas as fases herpética e pósherpética. Houve aumento da expressão de PP2A? e da fosforilação de PKR, IKK?/? e eIF2?, durante os períodos herpético e pós-herpético, e de PACT na fase pósherpética. A inibição de PKR promoveu o aumento da fosforilação de P38 em ambas as fases, e redução da fosforilação de PLC?1 acompanhada do retorno da fosforilação de Akt e STAT3 ao nível do grupo controle e o aumento da expressão de Ca-MKII? na fase herpética. Já na fase pós-herpética, reduziu a fosforilação de JNK e Akt e a expressão de Ca-MKII?, retornou a fosforilação de ERK1,2, PLC?1 e STAT3 ao nível do grupo controle e aumentou a expressão de TRPV1. Nossos resultados indicam que a atividade de PKR desempenha papel essencial na hiperalgesia térmica induzida por infecção pelo HSV1 / Double stranded RNA-activated protein kinase (PKR) is a sentinel molecule activated by cellular stress conditions, including viral infections. PKR activation by phosphorylation triggers cascades involved in inflammatory response and protein synthesis suppression. Our previous data suggest that PKR is involved in the inflammatory thermal hyperalgesia. Here we investigated the role played by PKR on thermal hyperalgesia induced by herpes simplex virus type-1 (HSV-1), during herpetic and post-herpetic phases, by combining behavioral, genetic, pharmacological, and molecular methods. Adult male C57bl/6, PKR+/+ and PKR-/- mice were inoculated with HSV-1. Control groups were inoculated with inactive (mock) HSV1. Mechanical allodynia and thermal hyperalgesia were monitored before virus inoculation and 8, 14, 21, and 28 days post-inoculation. The dose- and timeresponse curve and the capsaicin test were performed at 8th and 21st days post virus inoculation. Also in the herpetic and post-herpetic periods, was investigated the expression profile of proteins involved in the PKR signaling pathways (PKR, eIF2?, PACT, IKK and PP2A?), and the effect of PKR inhibition by monitoring PKR, IKK?/?, P38, JNK, ERK1,2, and STAT3 phosphorylation, and Ca-MKII? and TRPV1 expression in the dorsal root ganglia (L3-L6) ipsilaterally to the inoculated paw. Mechanical allodynia and thermal hyperalgesia became evident until 28 days postinnoculation. PKR-/- mice developed mechanical allodynia but not thermal hyperalgesia, when compared with PKR+/+ mice. Systemic PKR inhibition reversed thermal hyperalgesia in a dose and time-dependent manner, and prevented the capsaicin-induced nocifensive behavior, whereas PKR-/- showed no nocifensive behavior almost absent in both herpetic and post-herpetic phases. There was increased expression of PP2A? and the phosphorylation of PKR, IKK?/?, and eIF2?, during herpetic and post-herpetic periods, and PACT in the post-herpetic phase. PKR inhibition increased P38 phosphorylation in both phases, and reduction of PLC?1 phosphorylation together with the return of the Akt and STAT3 phosphorylation to the control group level, and enhanced Ca-MKII? expression in the herpetic phase. At the post-herpetic phase, suppressed JNK and Akt, and Ca-MKII? expression returned ERK1,2, PLC?1 and STAT3 phosphorylation to control group level and increased TRPV1 expression. The data indicate that PKR activity plays an essential role in the HSV-1 infection-induced thermal hyperalgesia
|
240 |
Virus Production and Cell Viability of HSV-1-infected Murine Keratinocytes (HEL-30) Co-cultured with Murine Macrophages (RAW 264.7)Graffagna, Barry 17 December 2018 (has links)
No description available.
|
Page generated in 0.087 seconds