• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 16
  • 14
  • 13
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 245
  • 245
  • 211
  • 64
  • 46
  • 35
  • 32
  • 23
  • 22
  • 21
  • 20
  • 18
  • 18
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

The role of poly(C)-binding protein 1 in HSV-1 Infection

Thornbury, Mackenzie 11 1900 (has links)
Lors de l'infection par le virus herpès simplex de type 1 (VHS-1), quatre types de capsides nucléaires sont créés : les procapsides et les capsides A, B, et C. Sur les quatre capsides, seules les capsides C contiennent de l'ADN viral et deviendront des particules infectieuses. Un niveau de régulation se produit lors de la sortie du noyau qui favorise la sortie d’es capsides C du noyau. Le mécanisme qui sous-tend ce phénomène est actuellement inconnu. Les recherches actuelles suggèrent que l'interaction entre la protéine virale pUL25 modifie la conformation de la couche hexamérique plane du complexe de sortie nucléaire (NEC) pour y introduire des pentamères et donc causer un arrondissement de la membrane et le bourgeonnement des capsides. Cependant, des questions subsistent quant à la manière dont les capsides A, B et C sont différenciées au sein du noyau pour assurer une sortie spécifique de la capside C puisque pUL25 se retrouve dans tous les types de capsides. Nous étudions ici comment les protéines de l'hôte peuvent agir dans la sortie nucléaire des capsides C. En se basant sur une étude précédente du laboratoire où la protéine hôte poly(C)-binding protein 1 (PCBP1) a été trouvée spécifiquement sur les capsides C par spectrométrie de masse, nous explorons le rôle de la PCBP1 dans l'infection par le VHS-1. À l'aide d’essaies de plaques, nous montrons que la PCBP1 est importante pour l'infection virale, car en son absence, les titres diminuent et lorsque la PCBP1 est sur-exprimée, les titres augmentent. Ce résultat ne semble pas être dû au fait que les PCBP1 affectent l'expression génique de sous-ensembles de gènes viraux immédiats précoces, précoces ou tardifs, ni qu'ils affectent la réplication du génome ou son encapsidation. La réduction des PCBP1 ne provoque pas d'accumulation de capsides ou de particules matures tel qu’évalué par la microscopie électronique, mais elle augmente le nombre de capsides B enveloppées dans l'espace périnucléaire (PNS). L'inhibition de PCBP1 diminue également le niveau de protéine pUL24, une protéine virale importante pour la sortie du virus du noyau. Nos résultats démontrent que la PCBP1 pourrait réguler l’activité de pUL24, de sorte que lorsque la PCBP1 est épuisée, pUL24 permet à plus de capsides B de se rendre dans l'espace périnucléaire. Cette recherche constitue un point de départ pour une analyse plus approfondie du mécanisme exact des PCBP1 dans les infections à HSV-1. En outre, elle pourrait fournir des indices importants pour élucider comment le pUL24 favorise la sortie du nucléaire. / During herpes simplex virus type 1 (HSV-1) infection, four types of nuclear capsids are made: procapsids and A-, B- and C-capsids. Of the four capsids, only C-capsids contain the viral DNA and will become infectious progeny. A level of regulation occurs during nuclear egress that ensures only C-capsids exit the nucleus. The mechanism that underlies this phenomenon is presently unknown. Current research suggests the viral protein pUL25 alters the conformation of the viral nuclear egress complex (NEC) that forms a flat hexameric coat on nuclear membranes by the introduction of pentamers and therefore the induction of membrane rounding and viral budding. However, questions remain for how A-, B-, and C-capsids are differentiated within the nucleus to ensure C-capsid specific egress since pUL25 is found on all capsid types. Here we investigate how host proteins may play a role in nuclear egress of C-capsids. Based on the lab’s previous study where host protein poly(C)-binding protein 1 (PCBP1) was found specifically on C-capsids via mass spectrometry, we explore the role of PCBP1 in HSV-1 infection. Using plaque assays we show that PCBP-1 is important for viral infection, as in its absence titers decrease and when PCBP1 is over expressed titers increase. This result does not seem to be due to PCBP1 affecting gene expression of immediate early, early, or late viral gene subsets, nor does it seem to affect genome replication or encapsidation. PCBP1 knockdown does not cause an accumulation of capsids or mature particles as assessed by electron microscopy, but it does increase the number of enveloped B-capsids observed in the perinuclear space (PNS). Depletion of PCBP1 also decreases the level of pUL24, a viral protein implicated in viral nuclear egress. Our results suggest that PCBP1 could be regulating pUL24 for proper activity in nuclear egress, such that when PCBP1 is depleted, more B-capsids are able to bud through the PNS. This research constitutes a starting point for further analysis into the exact mechanism of PCBP1 in HSV-1 infections. In addition, it may provide important clues to elucidate how pUL24 supports nuclear egress.
222

Indole-3-Carbinol Inhibition of Herpes Simplex Virus Replication

Stoner, Terri Dorene 03 December 2008 (has links)
No description available.
223

Pro- and antiapoptotic events in Herpes simplex virus type 1 (HSV-1) infection of immature dendritic cells

Kather, Angela 13 February 2012 (has links)
Herpes simplex virus Typ 1 (HSV-1) ist ein humanpathogenes Virus der Familie Herpesviridae. Für eine erfolgreiche Virusreplikation besitzt HSV-1 mehrere Gene, die in den meisten infizierten Zelltypen Apoptose verhindern. Im Gegensatz dazu führt die HSV-1 Infektion eines zentralen Zelltyps des Immunsystems, den unreifen dendritischen Zellen (iDCs), zu Apoptose. Dies könnte ein Aspekt der HSV-1 Immunevasion sein. Bisher waren die Ursachen der Apoptose von HSV-1 infizierten iDCs unzureichend aufgeklärt. Es wurde jedoch gezeigt, dass das antiapoptotische zelluläre Protein c-FLIP in HSV-1 infizierten iDCs reduziert ist. In dieser Arbeit wurde die c-FLIP Menge in iDCs erstmalig mit Hilfe von RNA Interferenz erfolgreich reduziert. Dies bestätigte die Bedeutung von c-FLIP für die Lebensfähigkeit von iDCs. Folglich könnte auch die Reduktion der c-FLIP Menge nach HSV-1 Infektion iDCs für Apoptose empfindlich machen. Die HSV-1 induzierte c-FLIP Reduktion erfolgte in späten Stadien der Infektion, abhängig von der ordnungsgemäßen Expression viraler „early“ und „leaky late“ Gene. Sie fand nicht auf RNA Ebene statt und war unabhängig vom Proteasom und der Bindung an den „death inducing signaling complex“. Stattdessen wurde c-FLIP wahrscheinlich von einer viralen oder zellulären Protease abgebaut. In dieser Arbeit wurde erstmals gezeigt, dass zusätzlich zu Veränderungen im zellulären Apoptosesignalnetzwerk der Mangel an einem antiapoptotischen viralen Faktor zur Apoptose von HSV-1 infizierten iDCs beiträgt. Eine Microarray Analyse der HSV-1 Genexpression ergab, dass HSV-1 Latenz-assoziierte Transkripte (LATs) in apoptotischen iDCs signifikant geringer exprimiert waren als in nicht-apoptotischen epithelialen Zellen. LATs besitzen in Neuronen und epithelialen Zellen eine antiapoptotische Aktivität. Diese könnte den Mangel an c-FLIP kompensieren. Übereinstimmend mit dieser Hypothese induzierte eine HSV-1 LAT-Deletionsmutante mehr Apoptose in iDCs im Vergleich zum Wildtyp-Virus. / Herpes simplex virus type 1 (HSV-1) is a human pathogen which belongs to the family Herpesviridae. HSV-1 encodes several genes, which serve to efficiently prevent apoptosis in most infected cell types, thereby ensuring successful virus replication. In contrast, HSV-1 infection of one central cell type of the immune system, immature dendritic cells (iDCs), results in apoptosis. This could be one aspect of HSV-1 immunevasion. So far, the mechanisms underlying apoptosis of HSV-1 infected iDCs were poorly defined. However, it has been shown that the antiapoptotic cellular protein c-FLIP is reduced in HSV-1 infected iDCs. In this work, the amount of c-FLIP was for the first time successfully reduced in iDCs by RNA interference. This confirmed the importance of c-FLIP for viability of iDCs. Therefore, it is likely that c-FLIP reduction after HSV-1 infection also sensitizes iDCs to apoptosis. HSV-1 induced c-FLIP reduction occurred at late stages of infection and was dependent on proper expression of early and leaky late virus genes. Furthermore, it was not operative at the RNA level and was independent from the proteasome and binding to the death inducing signaling complex. Rather, c-FLIP was presumably degraded by a viral or cellular protease. In this work it was shown for the first time, that in addition to changes in the cellular apoptosis signaling network, the lack of one antiapoptotic viral factor contributes to apoptosis of HSV-1 infected iDCs. HSV-1 latency-associated transcripts (LATs) were significantly lower expressed in apoptotic iDCs compared to non-apoptotic epithelial cells, determined by microarray analysis of HSV-1 gene expression. It is known that in neurons and epithelial cells, LATs possess a potent antiapoptotic activity. This could compensate the lack of c-FLIP. Consistent with this hypothesis, a LAT deletion mutant of HSV-1 induced more apoptosis in iDCs compared to the respective wild type virus.
224

Vergleichende Analysen zur Replikation und zum intraaxonalen Transport des Pseudorabiesvirus und des Herpes Simplex Virus Typ 1 in primären Rattenneuronen

Negatsch, Alexandra 28 September 2015 (has links) (PDF)
Nach dem Eintritt in den Wirtsorganismus und initialer Replikation infizieren Alphaherpesviren Neuronen zur weiteren Ausbreitung im Nervensystem und zur Etablierung einer Latenz. Dazu werden die Viruspartikel innerhalb der Axone retrograd von der Peripherie zum neuronalen Zellkörper transportiert. Die umgekehrte Richtung beschreibt den Weg des anterograden Transports vom Zellkörper zur Synapse für weitere Infektionen von Neuronen höherer Ordnung oder zurück zur Peripherie. Der retrograde intraaxonale Transport ist gut untersucht. Dagegen wird über den anterograden Transport kontrovers diskutiert. Zwei verschiedene Transportmodelle werden vermutet. Das „Married Model“ postuliert, dass umhüllte Virionen innerhalb von Vesikeln entlang des Axons transportiert werden. Die Freisetzung der Partikel erfolgt an der jeweiligen Synapse durch Endocytose. Das „Subassembly Model“ geht dagegen davon aus, dass einzelne Virusstrukurkomponenten (Nukleokapsid, Hülle) entlang des Axons transportiert werden. Der Zusammenbau und die Freisetzung erfolgt am Axonterminus bzw. an der Synapse (in vivo) oder am Wachstumskegel (in vitro) oder an speziellen Auftreibungen des Axons, den sogenannten Varicosities. Nach Infektion eines neuronalen Explantatsystems mit dem Pseudorabiesvirus (PrV) konnten ultrastrukturell umhüllte Virionen in Vesikeln detektiert werden und so der Nachweis der Gültigkeit des „Married Model“ als vorherrschendes Transportmodell geführt werden. Dagegen ist die Situation beim prototypischen Alphaherpesvirus, dem Herpes Simplex Virus Typ 1 (HSV-1), weiterhin ungeklärt. Aufgrund der zahlreichen unterschiedlichen Analysemethoden und -systeme war ein direkter Vergleich der beiden Viren bislang nicht möglich. Daher sollte in dieser Arbeit ein standardisiertes neuronales Kultursystem genutzt werden, um vier verschiedene HSV-1 Stämme im Vergleich zu PrV zu untersuchen. Für die Infektionen wurden sowohl Neuronen aus dem oberen Cervikalganglion als auch aus Spinalganglien genutzt. So konnte gezeigt werden, dass in Neuronen, welche mit den HSV-1 Stämmen HFEM, 17+ und SC16 infiziert waren ca. 75% als umhüllte Virionen in Vesikeln und ca. 25% als nackte Kapside vorlagen. Ingesamt war die Anzahl der Viruspartikel in HSV-1 infizierten Neuronen signifikant geringer als in PrV infizierten Kulturen. Überraschenderweise zeigten mit HSV-1 KOS infizierte Neuronen ein reverses Bild. Hier lagen nur 25% der Viruspartikel als umhüllte Virionen in Vesikeln vor, während 75% als nackte Kapside detektiert wurden. Dieser unerwartete Phänotyp sollte auf molekularbiologischer Ebene genauer untersucht werden. Dabei wurde auf die Genregion von US9 fokussiert. Das von US9 codierte Membranprotein spielt eine wichtige Rolle während des Zusammenbaus der Virionen und bei anschließenden axonalen anterograden Transportvorgängen. In dieser Arbeit konnte gezeigt werden, dass das HSV-1 KOS Genom durch verschiedene Basenaustausche an der vorhergesagten TATA-Box von US9 eine Mutation aufweist. Zusätzlich trägt das offene Leseraster durch eine weitere Mutation ein vorzeitiges Stopcodon auf und wird dadurch auf 58 Kodons reduziert, im Gegensatz zu anderen HSV-1 Stämmen, wo es 91 Kodons umfasst. Die Mutation an der TATA-Box verändert auch das ursprüngliche Stopcodon vom US8a Gen, was zur einer Verlängerung von ursprünglich 161 zu 191 Kodons führt. In Northern Blot Analysen konnte eine reduzierte Transkription von US9 in HSV-1 KOS infizierten Zellen detektiert werden. In HSV-1 KOS infizierten Zellen konnten mittels eines spezifischen Antiserums gegen US9 im Western Blot kein Genprodukt nachgewiesen werden. Auch Immunfluoreszenzanalysen zeigten, dass das abgeleitete verkürzte Protein offenbar nicht stabil exprimiert wird. Dagegen konnten Western Blot Analysen die Vergrößerung des pUS8a bestätigen. Der beobachtete auffällige intraaxonale Phänotyp könnte somit durch die Mutation des US9 Protein erklärt werden. Zusammenfassend wurde in dieser Arbeit gezeigt, dass auch bei HSV-1 vorwiegend das „Married Model“ für den anterograden intraaxonalen Transportweg bevorzugt wird und somit beide Alphaherpesviren, HSV-1 und PrV, denselben Transportweg nutzen.
225

The roles of virulence factors Us3 and γ<sub>1</sub>34.5 during different phases of HSV-1 life cycle

Mattila, R. (Riikka) 08 December 2015 (has links)
Abstract Herpes simplex virus type 1 (HSV-1) is a common pathogen with an age-standardized seroprevalence of 52% in Finland. The most common manifestation of HSV-1 infection is labial herpes, but recently HSV-1 has emerged as the most common cause of primary genital herpes in Finnish women. HSV-1 can also lead to severe conditions such as encephalitis. After the primary lytic HSV-1 infection at the epithelia, the progeny viruses infect the innervating sensory neurons. The neuronal infection may lead to a quiescent infection form, called latency. Periodically, the virus may reactivate, which can lead to recurrent infection at the epithelia. During different phases of the viral life cycle the host cells try to restrict the infection. This study set out to investigate the roles of two HSV-1 proteins, γ134.5 and Us3 during different phases of the HSV-1 life cycle. The aim of the first study was to investigate how the deletion of Us3 affected host responses, especially Toll-like Receptor (TLR) signaling, in monocytic U937 cells. TLR3 expression was increased during Us3 deletion virus infections. This also led to increased activation of IRF-3 and increased expression of type I interferons (IFN) and an interferon stimulated protein. This study shows that TLR3 is involved in controlling the HSV-1 infection and that Us3 regulates IRF-3 activation. The second study focused on the role of the γ134.5 protein in HSV-1 latency. Embryonic mouse dorsal root ganglion (DRG) cultures were used as a cell culture model for HSV-1 latency and reactivation. In this model γ134.5 deletion viruses did not reactivate as efficiently as wild-type viruses, even though they replicated well and established latency in the neurons. Stress granules are part of the host response. In the third study, the roles of the innate immunity effectors HSV-1 Us3 and human Z-DNA binding protein 1 (ZBP1) in stress granule formation (SG) were studied. Wild-type HSV-1 efficiently prevented the formation of SGs. The overexpression of ZBP1 resulted in accumulation of smaller but more abundant SGs during oxidative stress. Overexpression of Us3 did not significantly affect the size or number of SGs, but during Us3 deletion virus infection, SG proteins localized to cis-Golgi. This work shows that HSV-1 uses Us3 to evade and modulate host responses and that the γ134.5 protein is required for reactivation in mouse DRG cultures. / Tiivistelmä Herpes simplex virus tyyppi 1 (HSV-1) on yleinen taudinaiheuttaja, jonka ikävakioitu seroprevalenssi Suomessa on 52&#160;%. HSV-1 tunnetaan yleisimmin huuliherpeksen aiheuttajana, mutta myös kasvava osuus genitaaliherpeksistä on HSV-1:n aiheuttamia. HSV-1 voi johtaa myös vakaviin ilmentymiin, kuten aivotulehdukseen. Epiteelisolujen infektion tuottamia viruksia siirtyy aluetta hermottaviin tuntohermosoluihin, mikä voi johtaa piilevään infektiomuotoon eli latenssiin. Latentti virus voi ajoittain reaktivoitua, mistä voi seurata uusintainfektio. Isäntäsolu pyrkii rajoittamaan infektiota sen eri vaiheissa. Tämän tutkimuksen tarkoituksena oli selvittää kahden HSV-1:n virulenssiproteiinin, γ134.5:n ja Us3:n, merkitystä HSV-1:n elinkierrossa. Osatyössä I tutkittiin, miten Us3:n poisto vaikuttaa luontaisen immuniteetin vasteisiin, keskittyen etenkin Tollin kaltaisten reseptorien (TLR) signaalivälitykseen U937-monosyyttisoluissa. Us3-poistogeenisillä viruksilla suoritetuissa infektioissa TLR3:n ilmentyminen lisääntyi merkittävästi. Tämä johti myös lisääntyneeseen IRF-3-aktivaatioon sekä tyypin I interferonien ja interferonistimuloituvan proteiinin lisääntyneeseen ilmentymiseen. Tämä osoittaa, että TLR3 osallistuu HSV-1-viruksen tunnistukseen ja että Us3 säätelee IRF-3:n aktivaatiota. Osatyössä II keskityttiin γ134.5-proteiinin merkitykseen HSV-1:n latenssissa. Hiirialkioiden takajuuren hermoganglioita käytettiin soluviljelymallina HSV-1:n latenssin ja reaktivaation tutkimisessa. Tässä mallissa γ134.5-poistogeeniset virukset kasvoivat hyvin ja asettuivat latenteiksi, mutta eivät silti reaktivoituneet kuten luonnonkannan virukset. Stressijyväset ovat osa luontaista immuniteettia. Osatyössä III määritettiin HSV-1:n Us3-proteiinin ja ihmisen Z-DNA:han sitoutuvan proteiini 1:n (ZBP1) merkitystä stressijyvästen muodostumisessa. Luonnonkannan virus kykeni tehokkaasti estämään jyvästen muodostumisen. ZBP1:n yli-ilmentäminen oksidatiivisen stressin aikana johti suureen määrään pienikokoisia stressijyväsiä. Us3:n yli-ilmentäminen ei vaikuttanut stressijyväsiin, kun taas Us3-poistogeenisellä viruksella suoritetuissa infektioissa stressijyväsproteiinit paikantuivat Golgin laitteeseen. Tämä tutkimus osoittaa, että HSV-1 käyttää Us3-proteiinia luontaisten immuunivasteiden muunteluun ja että γ134.5-proteiini on välttämätön reaktivaatiossa hiiren hermoganglioissa.
226

Vergleichende Analysen zur Replikation und zum intraaxonalen Transport des Pseudorabiesvirus und des Herpes Simplex Virus Typ 1 in primären Rattenneuronen

Negatsch, Alexandra 25 February 2014 (has links)
Nach dem Eintritt in den Wirtsorganismus und initialer Replikation infizieren Alphaherpesviren Neuronen zur weiteren Ausbreitung im Nervensystem und zur Etablierung einer Latenz. Dazu werden die Viruspartikel innerhalb der Axone retrograd von der Peripherie zum neuronalen Zellkörper transportiert. Die umgekehrte Richtung beschreibt den Weg des anterograden Transports vom Zellkörper zur Synapse für weitere Infektionen von Neuronen höherer Ordnung oder zurück zur Peripherie. Der retrograde intraaxonale Transport ist gut untersucht. Dagegen wird über den anterograden Transport kontrovers diskutiert. Zwei verschiedene Transportmodelle werden vermutet. Das „Married Model“ postuliert, dass umhüllte Virionen innerhalb von Vesikeln entlang des Axons transportiert werden. Die Freisetzung der Partikel erfolgt an der jeweiligen Synapse durch Endocytose. Das „Subassembly Model“ geht dagegen davon aus, dass einzelne Virusstrukurkomponenten (Nukleokapsid, Hülle) entlang des Axons transportiert werden. Der Zusammenbau und die Freisetzung erfolgt am Axonterminus bzw. an der Synapse (in vivo) oder am Wachstumskegel (in vitro) oder an speziellen Auftreibungen des Axons, den sogenannten Varicosities. Nach Infektion eines neuronalen Explantatsystems mit dem Pseudorabiesvirus (PrV) konnten ultrastrukturell umhüllte Virionen in Vesikeln detektiert werden und so der Nachweis der Gültigkeit des „Married Model“ als vorherrschendes Transportmodell geführt werden. Dagegen ist die Situation beim prototypischen Alphaherpesvirus, dem Herpes Simplex Virus Typ 1 (HSV-1), weiterhin ungeklärt. Aufgrund der zahlreichen unterschiedlichen Analysemethoden und -systeme war ein direkter Vergleich der beiden Viren bislang nicht möglich. Daher sollte in dieser Arbeit ein standardisiertes neuronales Kultursystem genutzt werden, um vier verschiedene HSV-1 Stämme im Vergleich zu PrV zu untersuchen. Für die Infektionen wurden sowohl Neuronen aus dem oberen Cervikalganglion als auch aus Spinalganglien genutzt. So konnte gezeigt werden, dass in Neuronen, welche mit den HSV-1 Stämmen HFEM, 17+ und SC16 infiziert waren ca. 75% als umhüllte Virionen in Vesikeln und ca. 25% als nackte Kapside vorlagen. Ingesamt war die Anzahl der Viruspartikel in HSV-1 infizierten Neuronen signifikant geringer als in PrV infizierten Kulturen. Überraschenderweise zeigten mit HSV-1 KOS infizierte Neuronen ein reverses Bild. Hier lagen nur 25% der Viruspartikel als umhüllte Virionen in Vesikeln vor, während 75% als nackte Kapside detektiert wurden. Dieser unerwartete Phänotyp sollte auf molekularbiologischer Ebene genauer untersucht werden. Dabei wurde auf die Genregion von US9 fokussiert. Das von US9 codierte Membranprotein spielt eine wichtige Rolle während des Zusammenbaus der Virionen und bei anschließenden axonalen anterograden Transportvorgängen. In dieser Arbeit konnte gezeigt werden, dass das HSV-1 KOS Genom durch verschiedene Basenaustausche an der vorhergesagten TATA-Box von US9 eine Mutation aufweist. Zusätzlich trägt das offene Leseraster durch eine weitere Mutation ein vorzeitiges Stopcodon auf und wird dadurch auf 58 Kodons reduziert, im Gegensatz zu anderen HSV-1 Stämmen, wo es 91 Kodons umfasst. Die Mutation an der TATA-Box verändert auch das ursprüngliche Stopcodon vom US8a Gen, was zur einer Verlängerung von ursprünglich 161 zu 191 Kodons führt. In Northern Blot Analysen konnte eine reduzierte Transkription von US9 in HSV-1 KOS infizierten Zellen detektiert werden. In HSV-1 KOS infizierten Zellen konnten mittels eines spezifischen Antiserums gegen US9 im Western Blot kein Genprodukt nachgewiesen werden. Auch Immunfluoreszenzanalysen zeigten, dass das abgeleitete verkürzte Protein offenbar nicht stabil exprimiert wird. Dagegen konnten Western Blot Analysen die Vergrößerung des pUS8a bestätigen. Der beobachtete auffällige intraaxonale Phänotyp könnte somit durch die Mutation des US9 Protein erklärt werden. Zusammenfassend wurde in dieser Arbeit gezeigt, dass auch bei HSV-1 vorwiegend das „Married Model“ für den anterograden intraaxonalen Transportweg bevorzugt wird und somit beide Alphaherpesviren, HSV-1 und PrV, denselben Transportweg nutzen.
227

Effects of herpes simplex virus 1 (HSV-1) infection on nuclear amyloid aggregation

Arone Blanco, Maria January 2018 (has links)
Huntington’s disease (HD) and Spinocerebellar ataxia (SCA) are incurable neurodegenerative diseases that affect the central nervous system. Amyloids, highly organized protein aggregates, are a hallmark for many neurodegenerative diseases. The presence and accumulation of amyloids are toxic and constitute the major cause of neuron cell death. Both genetic and environmental factors contribute to the onset and progression of these diseases. However, despite intensive research, the underlying cause remains unclear. The role of viral infection as an environmental factor in the context of neurodegenerative diseases has not received much attention. The purpose of this study is to investigate the effects of Herpes Simplex Virus 1 (HSV-1) infection on nuclear amyloid aggregation in model cell lines of HD and SCA. The research process consists mainly of laboratory work which involved the use of several molecular techniques used in the field of biotechnology. The work comprises cultivating cells, infecting cells with HSV-1, Fluorescence microscopy, Western Blot and isolation and detection of amyloids. Western Blot is used for the analysis of specific proteins associated with protein aggregation in HD and SCA. The techniques used for detecting amyloids are Dot Blot and Antibody-staining of amyloids in cells. The results from Western Blot showed that aggregates changed in the presence of the virus. This pattern is observed for both HD and SCA1 cell lines. A big effort is done in this study to optimize Dot Blot as it is method that could be applied in every lab. Normalization of samples proved to be the most challenging part with Dot Blot. No definitive conclusions can be drawn from the Dot Blot results as reproducibility and sensitivity were lacking. This work addresses some of the difficulties encountered when working with detection of amyloids especially Dot Blot. Antibody-staining of amyloids showed that amyloids were formed in the presence of virus in comparison to non-infected. To conclude, aggregates changed, and amyloids were formed in the presence of virus. These results point to the fact that HSV-1 infection could be involved in the process of nuclear amyloid aggregation. The data presented in this thesis will need further investigation and characterization to identify the precise role of viral-induced amyloid formation in HD and SCA patient cells. / Huntingtons sjukdom (HD) och Spinocerebellära ataxier (SCA) är obotliga neurodegenerativa sjukdomar som påverkar det centrala nervsystemet. Amyloid, proteinaggregat som har en viss konformation är ett kännemärke för många neurodegenerativa sjukdomar. Ackumulering av dessa amyloider är toxiskt och är den främsta orsaken till att nervceller dör. Både genetiska faktorer och miljöfaktorer bidrar till uppkomsten och progressionen av dessa sjukdomar. Trots intensiv forskning är den bakomliggande orsaken emellertid fortfarande oklar. Virusinfektion som en potentiell miljöfaktor har i detta sammanhang inte fått mycket uppmärksamhet. Syftet med denna studie är att undersöka effekterna av Herpes Simplex Virus 1 (HSV-1) infektion på amyloid aggregering i modellcellinjer av HD och SCA. Forskningsarbetet bestod i huvudsakligen av experimentellt arbete med hjälp av flera molekylära tekniker inom bioteknikområdet som cell odling, infektering av celler med HSV-1, fluorescensmikroskopi, Western Blot och isolering och detektion av amyloider. Western Blot användes for att analysera specifika proteiner associerade med protein aggregering i HD och SCA. Amyloider detekterades med Dot Blot och med antikroppar specifika för amyloider. Resultat från Western Blot visade att amyloiderna förändras i virusinfekterade celler. Detta mönster observerades i både HD and SCA1 cellinjer. En stor bemöda görs i denna studie för att optimera Dot Blot eftersom det är en metod som kan användas i alla laboratorier. Normalisering visade sig vara det svåraste med detektion av amyloider. Inga definitiva slutsatser kan dras från dessa experiment, eftersom reproducerbarhet och känslighet var bristande. Detta arbete tar upp några av de svårigheter som uppstod vid arbetande med detektion av amyloider speciellt Dot Blot. Detektion av amyloider med antikropp visade att amyloider bildades till stor utsträckning i infekterade cellinjer i jämförelse med icke-infekterade. Sammanfattningsvis, amyloider förändrades och amyloider bildades i närvaro av virus. Dessa resultat indikerar på att HSV-1 infektion skulle kunna vara involverad i processen av amyloid aggregering. De presenterade uppgifter i detta examensarbete är preliminära och behöver följas upp med ytterligare studier för att identifiera virusens exakta roll i amyloid bildning i HD och SCA patient celler.
228

Molecular characterization of the contribution of autophagy to antigen presentation using quantitative proteomics

Bell, Christina 07 1900 (has links)
L’autophagie est une voie hautement conservée de dégradation lysosomale des constituants cellulaires qui est essentiel à l’homéostasie cellulaire et contribue à l’apprêtement et à la présentation des antigènes. Les rôles relativement récents de l'autophagie dans l'immunité innée et acquise sous-tendent de nouveaux paradigmes immunologiques pouvant faciliter le développement de nouvelles thérapies où la dérégulation de l’autophagie est associée à des maladies auto-immunes. Cependant, l'étude in vivo de la réponse autophagique est difficile en raison du nombre limité de méthodes d'analyse pouvant fournir une définition dynamique des protéines clés impliquées dans cette voie. En conséquence, nous avons développé un programme de recherche en protéomique intégrée afin d’identifier et de quantifier les proteines associées à l'autophagie et de déterminer les mécanismes moléculaires régissant les fonctions de l’autophagosome dans la présentation antigénique en utilisant une approche de biologie des systèmes. Pour étudier comment l'autophagie et la présentation antigénique sont activement régulés dans les macrophages, nous avons d'abord procédé à une étude protéomique à grande échelle sous différentes conditions connues pour stimuler l'autophagie, tels l’activation par les cytokines et l’infection virale. La cytokine tumor necrosis factor-alpha (TNF-alpha) est l'une des principales cytokines pro-inflammatoires qui intervient dans les réactions locales et systémiques afin de développer une réponse immune adaptative. La protéomique quantitative d'extraits membranaires de macrophages contrôles et stimulés avec le TNF-alpha a révélé que l'activation des macrophages a entrainé la dégradation de protéines mitochondriales et des changements d’abondance de plusieurs protéines impliquées dans le trafic vésiculaire et la réponse immunitaire. Nous avons constaté que la dégradation des protéines mitochondriales était sous le contrôle de la voie ATG5, et était spécifique au TNF-alpha. En outre, l’utilisation d’un nouveau système de présentation antigènique, nous a permi de constater que l'induction de la mitophagie par le TNF-alpha a entrainée l’apprêtement et la présentation d’antigènes mitochondriaux par des molécules du CMH de classe I, contribuant ainsi la variation du répertoire immunopeptidomique à la surface cellulaire. Ces résultats mettent en évidence un rôle insoupçonné du TNF-alpha dans la mitophagie et permet une meilleure compréhension des mécanismes responsables de la présentation d’auto-antigènes par les molécules du CMH de classe I. Une interaction complexe existe également entre infection virale et l'autophagie. Récemment, notre laboratoire a fourni une première preuve suggérant que la macroautophagie peut contribuer à la présentation de protéines virales par les molécules du CMH de classe I lors de l’infection virale par l'herpès simplex virus de type 1 (HSV-1). Le virus HSV1 fait parti des virus humains les plus complexes et les plus répandues. Bien que la composition des particules virales a été étudiée précédemment, on connaît moins bien l'expression de l'ensemble du protéome viral lors de l’infection des cellules hôtes. Afin de caractériser les changements dynamiques de l’expression des protéines virales lors de l’infection, nous avons analysé par LC-MS/MS le protéome du HSV1 dans les macrophages infectés. Ces analyses nous ont permis d’identifier un total de 67 protéines virales structurales et non structurales (82% du protéome HSV1) en utilisant le spectromètre de masse LTQ-Orbitrap. Nous avons également identifié 90 nouveaux sites de phosphorylation et de dix nouveaux sites d’ubiquitylation sur différentes protéines virales. Suite à l’ubiquitylation, les protéines virales peuvent se localiser au noyau ou participer à des événements de fusion avec la membrane nucléaire, suggérant ainsi que cette modification pourrait influer le trafic vésiculaire des protéines virales. Le traitement avec des inhibiteurs de la réplication de l'ADN induit des changements sur l'abondance et la modification des protéines virales, mettant en évidence l'interdépendance des protéines virales au cours du cycle de vie du virus. Compte tenu de l'importance de la dynamique d'expression, de l’ubiquitylation et la phosphorylation sur la fonction des proteines virales, ces résultats ouvriront la voie vers de nouvelles études sur la biologie des virus de l'herpès. Fait intéressant, l'infection HSV1 dans les macrophages déclenche une nouvelle forme d'autophagie qui diffère remarquablement de la macroautophagie. Ce processus, appelé autophagie associée à l’enveloppe nucléaire (nuclear envelope derived autophagy, NEDA), conduit à la formation de vésicules membranaires contenant 4 couches lipidiques provenant de l'enveloppe nucléaire où on retrouve une grande proportion de certaines protéines virales, telle la glycoprotéine B. Les mécanismes régissant NEDA et leur importance lors de l’infection virale sont encore méconnus. En utilisant un essai de présentation antigénique, nous avons pu montrer que la voie NEDA est indépendante d’ATG5 et participe à l’apprêtement et la présentation d’antigènes viraux par le CMH de classe I. Pour comprendre l'implication de NEDA dans la présentation des antigènes, il est essentiel de caractériser le protéome des autophagosomes isolés à partir de macrophages infectés par HSV1. Aussi, nous avons développé une nouvelle approche de fractionnement basé sur l’isolation de lysosomes chargés de billes de latex, nous permettant ainsi d’obtenir des extraits cellulaires enrichis en autophagosomes. Le transfert des antigènes HSV1 dans les autophagosomes a été determine par protéomique quantitative. Les protéines provenant de l’enveloppe nucléaire ont été préférentiellement transférées dans les autophagosome lors de l'infection des macrophages par le HSV1. Les analyses protéomiques d’autophagosomes impliquant NEDA ou la macroautophagie ont permis de decouvrir des mécanismes jouant un rôle clé dans l’immunodominance de la glycoprotéine B lors de l'infection HSV1. Ces analyses ont également révélées que diverses voies autophagiques peuvent être induites pour favoriser la capture sélective de protéines virales, façonnant de façon dynamique la nature de la réponse immunitaire lors d'une infection. En conclusion, l'application des méthodes de protéomique quantitative a joué un rôle clé dans l'identification et la quantification des protéines ayant des rôles importants dans la régulation de l'autophagie chez les macrophages, et nous a permis d'identifier les changements qui se produisent lors de la formation des autophagosomes lors de maladies inflammatoires ou d’infection virale. En outre, notre approche de biologie des systèmes, qui combine la protéomique quantitative basée sur la spectrométrie de masse avec des essais fonctionnels tels la présentation antigénique, nous a permis d’acquérir de nouvelles connaissances sur les mécanismes moléculaires régissant les fonctions de l'autophagie lors de la présentation antigénique. Une meilleure compréhension de ces mécanismes permettra de réduire les effets nuisibles de l'immunodominance suite à l'infection virale ou lors du développement du cancer en mettant en place une réponse immunitaire appropriée. / Autophagy is a highly conserved lysosomal-mediated protein degradation pathway that plays a crucial role in maintaining cellular homeostasis and contributes to antigen processing and presentation. The emerging roles of autophagy in both innate and adaptive immunity underpin novel immunological paradigms that may provide opportunities for the development of new therapies where impaired autophagy is associated with autoimmune diseases. However, the in vivo study of autophagic response is challenging in view of the limited number of analytical approaches that can provide a dynamic definition of the key proteins involved in this pathway. Accordingly, we developed an integrated proteomics research program to unravel the molecular machines associated with autophagy and to decipher the fine details of the molecular mechanisms governing the functions of the autophagosome in antigen presentation using a systems biology approach. To study how autophagy and antigen presentation are actively modulated in macrophages, we first conducted comprehensive, global proteomics studies under different conditions known to stimulate autophagy. Autophagy is modulated by cytokines as well as by viral infection in various ways. TNF-alpha is one of the major proinflammatory cytokines that mediate local and systemic responses and direct the development of adaptive immunity. Label-free quantitative proteomics analysis of membrane extracts from TNF-alpha activated and resting macrophages revealed that TNF-alpha activation led to the downregulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the downregulation of mitochondria proteins occurred through Atg5-dependent mitophagy, and was specific to TNF-alpha. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-alpha enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules, suggesting that TNF-alpha induced mitophagy contributes to the modification of the MHC class I peptide repertoire. These findings highlight an unsuspected role of TNF-alpha in mitophagy and expanded our understanding of the mechanisms responsible for MHC class I presentation of self-antigens. A complex interplay also exists between viral infection and autophagy. Recently, our lab provided the first evidence that macroautophagy can contribute to the presentation of viral proteins on MHC class I molecules during Herpes Simplex Virus type 1 (HSV1) infection. HSV1 are among the most complex and widespread human viruses. While the composition of viral particles has been studied, less is known about the expression of the whole viral proteome in infected cells. To comprehensively characterize the system, we analyzed the proteome of the prototypical HSV1 in infected macrophages by LC-MS/MS. We achieved a very high level of protein coverage and identified a total of 67 structural and non-structural viral proteins (82% of the HSV1 proteome) using LC-MS/MS on a LTQ-Orbitrap instrument. We also obtained a comprehensive map of 90 novel phosphorylation sites and ten novel ubiquitylation sites on different viral proteins. Interestingly all ubiquitylated proteins could either localize to the nucleus or participate in membrane fusion events, suggesting that ubiquitylation of viral proteins might affect their trafficking. Treatment with inhibitors of DNA replication induced changes of both viral protein abundance and modifications, highlighting the interdependence of viral proteins during the life cycle of the virus. Given the importance of expression dynamics, ubiquitylation and phosphorylation for protein function, these findings will serve as important tools for future studies on herpes virus biology. Interestingly, HSV1 infection in macrophages triggers a novel form of autophagy which remarkably differs in many ways from macroautophagy. This process, referred to as nuclear envelope-derived autophagy (NEDA), leads to the formation of 4-membrane layered vesicles originating from the nuclear envelope where some viral protein such as glycoprotein B are highly enriched. To which extent this process differs from macroautophagy and participates in the pathogenesis of HSV infection is still largely unknown. Using a novel antigen presentation assay we could show that NEDA is an Atg5-independent pathway that participates in the capture of viral proteins, and their processing and presentation on MHC class I molecules. To understand the involvement of NEDA in antigen presentation it is crucial to characterize the autophagosomal proteome in HSV1 infected macrophages. We developed a novel isolation method based on the loading of the lysosomal compartment with latex beads, a unique tool to obtain very pure cell extracts, upon autophagy induction. The transfer of HSV1 antigens into autophagosomes was monitored using quantitative proteomics. Nuclear enveloped-derived proteins were preferentially transferred to the autophagosome during HSV1 infection. Detailed proteomics characterization of autophagosomes formed during NEDA and macroautophagy led to the discovery of mechanisms that play a key role in glycoprotein B immunodominance during HSV1 infection. These analyses also revealed that various autophagic pathways can be induced to promote the capture of selective sets of viral proteins, thus actively shaping the nature of the immune response during infection. In conclusion, the application of quantitative proteomics methods played a key role in identifying and quantifying important regulators of autophagy in macrophages and allowed us to identify changes occurring during the remodeling of autophagosomes in response to disease and inflammatory conditions such as viral infections. Furthermore, our systems biology approach that combined mass spectrometry-based quantitative proteomics with functional screens such as antigen presentation assays revealed novel biological insights on the molecular mechanisms governing the functions of autophagy in antigen presentation. Harnessing the contribution of autophagy in antigen presentation has the potential to minimize the deleterious effects of immunodominance in viral infection and cancer by shaping an appropriate immune response.
229

Analysis of artificial chromosomes in human embryonic stem cells

Mandegar, Mohammad Ali January 2011 (has links)
The development of safe and efficient gene delivery systems in pluripotent human embryonic stem cells (hESc) is essential to realising their full potential for basic and clinical research. The purpose of this study was to develop an efficient, non-integrating gene expression system in pluripotent hESc using human artificial chromosomes (HAC). Similar to endogenous chromosomes, HAC are capable of gene expression, replication and segregation during cell division. Unlike retroviral-mediated gene delivery vectors, HAC do not integrate into the host genome and can encompass large genomic regions for the delivery of multiple genes. Despite the advantages HAC offer, their use has been limited due to laborious cloning procedures and poor transfection efficiencies, and thus only studied in immortalised and tumour-derived human cell lines. In this study, the high transduction efficiency of herpes simplex virus type-1 (HSV-1) amplicons was utilised to overcome the described difficulties and delivered HAC vectors into pluripotent hESc. Analysis of stable hESc clones showed that de novo gene-expressing HAC were present at high frequencies ranging from 10-70% of metaphases analysed, without integrating into the genome. The established HAC contained an active centromere, and were stably maintained without integration or loss in the absence of selection for 90 days. Stable HAC-containing hESc clones retained their pluripotency as demonstrated by neuronal differentiation, in vitro germ layer and teratoma formation assays. HAC gene expression persisted, with some variation, post-differentiation in the various deriving cell types. This is the first report of successful de novo HAC formation in hESc for gene expression studies. These findings show potential for delivering high-capacity genomic constructs safely and efficiently into pluripotent cells for the purpose of genetic manipulation and ultimately patient-specific somatic gene therapy.
230

HSV-1 amplicon system for human artificial chromosome formation in human ES/iPS cells and pluripotency induction

Khoja, Suhail January 2012 (has links)
Development of safe and efficient approaches for gene delivery in human embryonic stem cells (hESc) and particularly in human induced pluripotent stem (hiPS) cells, which can be derived in a person-specific manner, is considered to be imperative for harnessing their full potential in both the basic and applied research. The aim of this study was to evaluate the potential of human artificial chromosome (HAC) for gene delivery and expression in hESc and hiPS cells. HAC offers many potential advantages including the provision for carrying large genes with corresponding regulatory elements to obtain long-term regulated gene expression. In addition, they can replicate and segregate independently without integration into the host cell genome. To develop HAC in hiPS cells, the first part of the study was aimed at generating hiPS cells utilising the Herpes Simplex Virus (HSV)-1 amplicon system. With the use of EBNA-1/OriP retention elements incorporated into the HSV-1 amplicon vectors, hiPS cells completely free of vector and transgenes sequences were successfully derived from human embryonic fibroblasts. The hiPS cells exhibited proliferation and differentiation potential similar to that of hESc. In the second part of the study, development of HAC in hESc and hiPS cells was assessed by utilising the HSV-1 amplicon system to deliver the HAC DNA. Analysis of the hESc confirmed the presence of functional HAC which replicated the behaviour of the host chromosomes. Additionally, HAC generation did not lead to impairment in the developmental potential and pluripotency of hESc. The hiPS cells supported HAC at low frequency but DNA also integrated into the host chromosomes. The HAC system, therefore, needs further refinements to improve the frequency of HAC formation and reduce the chromosomal integration of HAC constructs in hiPS cells. Overall, these findings provide a simple and safe way of pluripotency induction and genetic modification of pluripotent stem cells using the HSV-1 amplicon system and represent an important advance towards patient specific gene and cell therapy.

Page generated in 0.0408 seconds